Newer
Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/*
* Licensed to the OpenAirInterface (OAI) Software Alliance under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The OpenAirInterface Software Alliance licenses this file to You under
* the OAI Public License, Version 1.1 (the "License"); you may not use this file
* except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.openairinterface.org/?page_id=698
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*-------------------------------------------------------------------------------
* For more information about the OpenAirInterface (OAI) Software Alliance:
* contact@openairinterface.org
*/
/*! \file PHY/LTE_TRANSPORT/dci_nr.c
* \brief Implements PDCCH physical channel TX/RX procedures (36.211) and DCI encoding/decoding (36.212/36.213). Current LTE compliance V8.6 2009-03.
* \author R. Knopp, A. Mico Pereperez
* \date 2018
* \version 0.1
* \company Eurecom
* \email: knopp@eurecom.fr
* \note
* \warning
*/
#ifdef USER_MODE
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#endif
//#include "PHY/defs.h"
#include "PHY/defs_nr_UE.h"
//#include "PHY/extern.h"
//#include "SCHED/defs.h"
//#include "SIMULATION/TOOLS/defs.h" // for taus
#include "PHY/sse_intrin.h"
#include "assertions.h"
#include "T.h"
//#define DEBUG_DCI_ENCODING 1
//#define DEBUG_DCI_DECODING 1
//#define DEBUG_PHY
//#define NR_LTE_PDCCH_DCI_SWITCH
#define NR_PDCCH_DCI_RUN // activates new nr functions
#define NR_PDCCH_DCI_DEBUG // activates NR_PDCCH_DCI_DEBUG logs
#define NR_NBR_CORESET_ACT_BWP 3 // The number of CoreSets per BWP is limited to 3 (including initial CORESET: ControlResourceId 0)
#define NR_NBR_SEARCHSPACE_ACT_BWP 10 // The number of SearSpaces per BWP is limited to 10 (including initial SEARCHSPACE: SearchSpaceId 0)
//#undef ALL_AGGREGATION
//extern uint16_t phich_reg[MAX_NUM_PHICH_GROUPS][3];
//extern uint16_t pcfich_reg[4];
/*uint32_t check_phich_reg(NR_DL_FRAME_PARMS *frame_parms,uint32_t kprime,uint8_t lprime,uint8_t mi)
{
uint16_t i;
uint16_t Ngroup_PHICH = (frame_parms->phich_config_common.phich_resource*frame_parms->N_RB_DL)/48;
uint16_t mprime;
uint16_t *pcfich_reg = frame_parms->pcfich_reg;
if ((lprime>0) && (frame_parms->Ncp==0) )
return(0);
// printf("check_phich_reg : mi %d\n",mi);
// compute REG based on symbol
if ((lprime == 0)||
((lprime==1)&&(frame_parms->nb_antenna_ports_eNB == 4)))
mprime = kprime/6;
else
mprime = kprime>>2;
// check if PCFICH uses mprime
if ((lprime==0) &&
((mprime == pcfich_reg[0]) ||
(mprime == pcfich_reg[1]) ||
(mprime == pcfich_reg[2]) ||
(mprime == pcfich_reg[3]))) {
#ifdef DEBUG_DCI_ENCODING
printf("[PHY] REG %d allocated to PCFICH\n",mprime);
#endif
return(1);
}
// handle Special subframe case for TDD !!!
// printf("Checking phich_reg %d\n",mprime);
if (mi > 0) {
if (((frame_parms->phich_config_common.phich_resource*frame_parms->N_RB_DL)%48) > 0)
Ngroup_PHICH++;
if (frame_parms->Ncp == 1) {
Ngroup_PHICH<<=1;
}
for (i=0; i<Ngroup_PHICH; i++) {
if ((mprime == frame_parms->phich_reg[i][0]) ||
(mprime == frame_parms->phich_reg[i][1]) ||
(mprime == frame_parms->phich_reg[i][2])) {
#ifdef DEBUG_DCI_ENCODING
printf("[PHY] REG %d (lprime %d) allocated to PHICH\n",mprime,lprime);
#endif
return(1);
}
}
}
return(0);
}*/
uint16_t extract_crc(uint8_t *dci,uint8_t dci_len)
{
uint16_t crc16;
// uint8_t i;
/*
uint8_t crc;
crc = ((uint16_t *)dci)[DCI_LENGTH>>4];
printf("crc1: %x, shift %d (DCI_LENGTH %d)\n",crc,DCI_LENGTH&0xf,DCI_LENGTH);
crc = (crc>>(DCI_LENGTH&0xf));
// clear crc bits
((uint16_t *)dci)[DCI_LENGTH>>4] &= (0xffff>>(16-(DCI_LENGTH&0xf)));
printf("crc2: %x, dci0 %x\n",crc,((int16_t *)dci)[DCI_LENGTH>>4]);
crc |= (((uint16_t *)dci)[1+(DCI_LENGTH>>4)])<<(16-(DCI_LENGTH&0xf));
// clear crc bits
(((uint16_t *)dci)[1+(DCI_LENGTH>>4)]) = 0;
printf("extract_crc: crc %x\n",crc);
*/
#ifdef DEBUG_DCI_DECODING
LOG_I(PHY,"dci_crc (%x,%x,%x), dci_len&0x7=%d\n",dci[dci_len>>3],dci[1+(dci_len>>3)],dci[2+(dci_len>>3)],
dci_len&0x7);
#endif
if ((dci_len&0x7) > 0) {
((uint8_t *)&crc16)[0] = dci[1+(dci_len>>3)]<<(dci_len&0x7) | dci[2+(dci_len>>3)]>>(8-(dci_len&0x7));
((uint8_t *)&crc16)[1] = dci[(dci_len>>3)]<<(dci_len&0x7) | dci[1+(dci_len>>3)]>>(8-(dci_len&0x7));
} else {
((uint8_t *)&crc16)[0] = dci[1+(dci_len>>3)];
((uint8_t *)&crc16)[1] = dci[(dci_len>>3)];
}
#ifdef DEBUG_DCI_DECODING
LOG_I(PHY,"dci_crc =>%x\n",crc16);
#endif
// dci[(dci_len>>3)]&=(0xffff<<(dci_len&0xf));
// dci[(dci_len>>3)+1] = 0;
// dci[(dci_len>>3)+2] = 0;
return((uint16_t)crc16);
}
static uint8_t d[3*(MAX_DCI_SIZE_BITS + 16) + 96];
static uint8_t w[3*3*(MAX_DCI_SIZE_BITS+16)];
void dci_encoding(uint8_t *a,
uint8_t A,
uint16_t E,
uint8_t *e,
uint16_t rnti)
{
uint8_t D = (A + 16);
uint32_t RCC;
#ifdef DEBUG_DCI_ENCODING
int32_t i;
#endif
// encode dci
#ifdef DEBUG_DCI_ENCODING
printf("Doing DCI encoding for %d bits, e %p, rnti %x\n",A,e,rnti);
#endif
memset((void *)d,LTE_NULL,96);
ccodelte_encode(A,2,a,d+96,rnti);
#ifdef DEBUG_DCI_ENCODING
for (i=0; i<16+A; i++)
printf("%d : (%d,%d,%d)\n",i,*(d+96+(3*i)),*(d+97+(3*i)),*(d+98+(3*i)));
#endif
#ifdef DEBUG_DCI_ENCODING
printf("Doing DCI interleaving for %d coded bits, e %p\n",D*3,e);
#endif
RCC = sub_block_interleaving_cc(D,d+96,w);
#ifdef DEBUG_DCI_ENCODING
printf("Doing DCI rate matching for %d channel bits, RCC %d, e %p\n",E,RCC,e);
#endif
lte_rate_matching_cc(RCC,E,w,e);
}
uint8_t *generate_dci0(uint8_t *dci,
uint8_t *e,
uint8_t DCI_LENGTH,
uint8_t aggregation_level,
uint16_t rnti)
{
uint16_t coded_bits;
uint8_t dci_flip[8];
if (aggregation_level>3) {
printf("dci.c: generate_dci FATAL, illegal aggregation_level %d\n",aggregation_level);
return NULL;
}
coded_bits = 72 * (1<<aggregation_level);
/*
#ifdef DEBUG_DCI_ENCODING
for (i=0;i<1+((DCI_LENGTH+16)/8);i++)
printf("i %d : %x\n",i,dci[i]);
#endif
*/
if (DCI_LENGTH<=32) {
dci_flip[0] = dci[3];
dci_flip[1] = dci[2];
dci_flip[2] = dci[1];
dci_flip[3] = dci[0];
} else {
dci_flip[0] = dci[7];
dci_flip[1] = dci[6];
dci_flip[2] = dci[5];
dci_flip[3] = dci[4];
dci_flip[4] = dci[3];
dci_flip[5] = dci[2];
dci_flip[6] = dci[1];
dci_flip[7] = dci[0];
#ifdef DEBUG_DCI_ENCODING
printf("DCI => %x,%x,%x,%x,%x,%x,%x,%x\n",
dci_flip[0],dci_flip[1],dci_flip[2],dci_flip[3],
dci_flip[4],dci_flip[5],dci_flip[6],dci_flip[7]);
#endif
}
dci_encoding(dci_flip,DCI_LENGTH,coded_bits,e,rnti);
return(e+coded_bits);
}
uint32_t Y;
#define CCEBITS 72
#define CCEPERSYMBOL 33 // This is for 1200 RE
#define CCEPERSYMBOL0 22 // This is for 1200 RE
#define DCI_BITS_MAX ((2*CCEPERSYMBOL+CCEPERSYMBOL0)*CCEBITS)
#define Msymb (DCI_BITS_MAX/2)
//#define Mquad (Msymb/4)
static uint32_t bitrev_cc_dci[32] = {1,17,9,25,5,21,13,29,3,19,11,27,7,23,15,31,0,16,8,24,4,20,12,28,2,18,10,26,6,22,14,30};
static int32_t wtemp[2][Msymb];
void pdcch_interleaving(NR_DL_FRAME_PARMS *frame_parms,int32_t **z, int32_t **wbar,uint8_t n_symbols_pdcch,uint8_t mi)
{
int32_t *wptr,*wptr2,*zptr;
uint32_t Mquad = get_nquad(n_symbols_pdcch,frame_parms,mi);
uint32_t RCC = (Mquad>>5), ND;
uint32_t row,col,Kpi,index;
int32_t i,k,a;
#ifdef RM_DEBUG
int32_t nulled=0;
#endif
// printf("[PHY] PDCCH Interleaving Mquad %d (Nsymb %d)\n",Mquad,n_symbols_pdcch);
if ((Mquad&0x1f) > 0)
RCC++;
Kpi = (RCC<<5);
ND = Kpi - Mquad;
k=0;
for (col=0; col<32; col++) {
index = bitrev_cc_dci[col];
for (row=0; row<RCC; row++) {
//printf("col %d, index %d, row %d\n",col,index,row);
if (index>=ND) {
for (a=0; a<frame_parms->nb_antenna_ports_eNB; a++) {
//printf("a %d k %d\n",a,k);
wptr = &wtemp[a][k<<2];
zptr = &z[a][(index-ND)<<2];
//printf("wptr=%p, zptr=%p\n",wptr,zptr);
wptr[0] = zptr[0];
wptr[1] = zptr[1];
wptr[2] = zptr[2];
wptr[3] = zptr[3];
}
k++;
}
index+=32;
}
}
// permutation
for (i=0; i<Mquad; i++) {
for (a=0; a<frame_parms->nb_antenna_ports_eNB; a++) {
//wptr = &wtemp[a][i<<2];
//wptr2 = &wbar[a][((i+frame_parms->Nid_cell)%Mquad)<<2];
wptr = &wtemp[a][((i+frame_parms->Nid_cell)%Mquad)<<2];
wptr2 = &wbar[a][i<<2];
wptr2[0] = wptr[0];
wptr2[1] = wptr[1];
wptr2[2] = wptr[2];
wptr2[3] = wptr[3];
}
}
}
#ifdef NR_PDCCH_DCI_RUN
void nr_pdcch_demapping(uint16_t *llr, uint16_t *wbar,
NR_DL_FRAME_PARMS *frame_parms,
uint8_t coreset_time_dur, uint32_t coreset_nbr_rb) {
/*
* LLR contains the PDCCH for the coreset_time_dur symbols in the following sequence:
*
* The REGs have to be numbered in increasing order in a time-first manner,
* starting with 0 for the first OFDM symbol and the lowest-numbered resource
* block in the control resource set
*
* | ... | ... | ... |
* | REG 3 | REG 4 | REG 5 |
* | REG 0 | REG 1 | REG 2 |
* | symbol0 | symbol1 | symbol2 |
*
* .................
* ___________REG 1+2l
* ___________REG 1+l
* symbol 1___REG 1
* .................
* ___________REG 2l
* ___________REG l
* symbol 0___REG 0
*
* WBAR will contain the PDCCH organized in REGx where x will be consecutive:
* REG 0
* REG 1
* REG 2
* ...
* REG l
* REG 1+l
* REG 2+l
* ...
*
*/
uint32_t m,i,k,l;
uint32_t num_re_pdcch = 12 * coreset_nbr_rb;
i=0;
m=0;
for (k=0; k<num_re_pdcch; k++) {
for (l=0; l < coreset_time_dur ; l++) {
if ((k%12==1)||(k%12==5)||(k%12==9)){
#ifdef NR_PDCCH_DCI_DEBUG
printf("\t\t<-NR_PDCCH_DCI_DEBUG (nr_pdcch_demapping)-> k,l=(%d,%d) DM-RS PDCCH signal\n",k,l);
#endif
} else {
if ((m%9)==0 && (m !=0) && (l==0)) {
#ifdef NR_PDCCH_DCI_DEBUG
printf("\t\t<-NR_PDCCH_DCI_DEBUG (nr_pdcch_demapping)-> we have modified m: old_m=%d, new_m=%d\n",
m,m+(9*(coreset_time_dur-1)));
#endif
m=m+(9*(coreset_time_dur-1)); // to avoid overwriting m+1 when a whole REG has been completed
}
wbar[(l*9)+m] = llr[(l*9*coreset_nbr_rb)+i];
#ifdef NR_PDCCH_DCI_DEBUG
printf("\t\t<-NR_PDCCH_DCI_DEBUG (nr_pdcch_demapping)-> k,l=(%d,%d) i,m=(%d,%d) REG (%d) > wbar(%d,%d) \t llr[%d]->wbar[%d]\n",
k,l,i,m, (m+(l*9)) / 9, *(char*) &wbar[m+(l*9)], *(1 + (char*) &wbar[m+(l*9)]),
(l*9*coreset_nbr_rb)+i,m+(l*9));
#endif
if (l==coreset_time_dur-1) {
i++;
m++;
}
}
}
}
}
#endif
void pdcch_demapping(uint16_t *llr,uint16_t *wbar,NR_DL_FRAME_PARMS *frame_parms,uint8_t num_pdcch_symbols,uint8_t mi)
{
uint32_t i, lprime;
uint16_t kprime,kprime_mod12,mprime,symbol_offset,tti_offset,tti_offset0;
int16_t re_offset,re_offset0;
// This is the REG allocation algorithm from 36-211, second part of Section 6.8.5
int Msymb2;
switch (frame_parms->N_RB_DL) {
case 100:
Msymb2 = Msymb;
break;
case 75:
Msymb2 = 3*Msymb/4;
break;
case 50:
Msymb2 = Msymb>>1;
break;
case 25:
Msymb2 = Msymb>>2;
break;
case 15:
Msymb2 = Msymb*15/100;
break;
case 6:
Msymb2 = Msymb*6/100;
break;
default:
Msymb2 = Msymb>>2;
break;
}
mprime=0;
re_offset = 0;
re_offset0 = 0; // counter for symbol with pilots (extracted outside!)
for (kprime=0; kprime<frame_parms->N_RB_DL*12; kprime++) {
for (lprime=0; lprime<num_pdcch_symbols; lprime++) {
symbol_offset = (uint32_t)frame_parms->N_RB_DL*12*lprime;
tti_offset = symbol_offset + re_offset;
tti_offset0 = symbol_offset + re_offset0;
// if REG is allocated to PHICH, skip it
if (check_phich_reg(frame_parms,kprime,lprime,mi) == 1) {
// printf("dci_demapping : skipping REG %d (RE %d)\n",(lprime==0)?kprime/6 : kprime>>2,kprime);
if ((lprime == 0)&&((kprime%6)==0))
re_offset0+=4;
} else { // not allocated to PHICH/PCFICH
// printf("dci_demapping: REG %d\n",(lprime==0)?kprime/6 : kprime>>2);
if (lprime == 0) {
// first symbol, or second symbol+4 TX antennas skip pilots
kprime_mod12 = kprime%12;
if ((kprime_mod12 == 0) || (kprime_mod12 == 6)) {
// kprime represents REG
for (i=0; i<4; i++) {
wbar[mprime] = llr[tti_offset0+i];
#ifdef DEBUG_DCI_DECODING
// LOG_I(PHY,"PDCCH demapping mprime %d.%d <= llr %d (symbol %d re %d) -> (%d,%d)\n",mprime/4,i,tti_offset0+i,symbol_offset,re_offset0,*(char*)&wbar[mprime],*(1+(char*)&wbar[mprime]));
#endif
mprime++;
re_offset0++;
}
}
} else if ((lprime==1)&&(frame_parms->nb_antenna_ports_eNB == 4)) {
// LATER!!!!
} else { // no pilots in this symbol
kprime_mod12 = kprime%12;
if ((kprime_mod12 == 0) || (kprime_mod12 == 4) || (kprime_mod12 == 8)) {
// kprime represents REG
for (i=0; i<4; i++) {
wbar[mprime] = llr[tti_offset+i];
#ifdef DEBUG_DCI_DECODING
// LOG_I(PHY,"PDCCH demapping mprime %d.%d <= llr %d (symbol %d re %d) -> (%d,%d)\n",mprime/4,i,tti_offset+i,symbol_offset,re_offset+i,*(char*)&wbar[mprime],*(1+(char*)&wbar[mprime]));
#endif
mprime++;
}
} // is representative
} // no pilots case
} // not allocated to PHICH/PCFICH
// Stop when all REGs are copied in
if (mprime>=Msymb2)
break;
} //lprime loop
re_offset++;
} // kprime loop
}
static uint16_t wtemp_rx[Msymb];
#ifdef NR_PDCCH_DCI_RUN
void nr_pdcch_deinterleaving(NR_DL_FRAME_PARMS *frame_parms, uint16_t *z,
uint16_t *wbar, uint8_t coreset_time_dur, uint8_t reg_bundle_size_L,
uint8_t coreset_interleaver_size_R, uint8_t n_shift, uint32_t coreset_nbr_rb)
{
/*
* This function will perform deinterleaving described in 38.211 Section 7.3.2.2
* coreset_freq_dom (bit map 45 bits: each bit indicates 6 RB in CORESET -> 1 bit MSB indicates PRB 0..6 are part of CORESET)
* coreset_time_dur (1,2,3)
* coreset_CCE_REG_mapping_type (interleaved, non-interleaved)
* reg_bundle_size (2,3,6)
*/
#ifdef NR_PDCCH_DCI_DEBUG
printf("\t\t<-NR_PDCCH_DCI_DEBUG (nr_pdcch_deinterleaving)-> coreset_nbr_rb=(%lld), reg_bundle_size_L=(%d)\n",
coreset_nbr_rb,reg_bundle_size_L);
#endif
/*
* First verify that CORESET is interleaved or not interleaved depending on parameter cce-REG-MappingType
* To be done
* if non-interleaved then do nothing: wbar table stays as it is
* if interleaved then do this: wbar table has bundles interleaved. We have to de-interleave then
* following procedure described in 38.211 Section 7.3.2.2:
*/
int coreset_interleaved = 1;
uint32_t bundle_id, bundle_interleaved, c=0 ,r=-1, k, l, i=0;
uint32_t coreset_C = (uint32_t)(coreset_nbr_rb / (coreset_interleaver_size_R*reg_bundle_size_L));
uint16_t *wptr;
wptr = &wtemp_rx[0];
z = &wtemp_rx[0];
bundle_id=0;
for (k=0 ; k<9*coreset_nbr_rb*coreset_time_dur; k++){
#ifdef NR_PDCCH_DCI_DEBUG
printf("\t\t<-NR_PDCCH_DCI_DEBUG (nr_pdcch_deinterleaving)-> k=%d \t coreset_interleaved=%d reg_bundle_size_L=%d coreset_C=%d coreset_interleaver_R=%d",
k,coreset_interleaved,reg_bundle_size_L, coreset_C,coreset_interleaver_size_R);
#endif
if (k%(9*reg_bundle_size_L)==0) {
// calculate offset properly
if (r==coreset_interleaver_size_R-1) {
//if (bundle_id>=(c+1)*coreset_interleaver_size_R) {
c++;
r=0;
} else{
r++;
}
#ifdef NR_PDCCH_DCI_DEBUG
printf("\t --> time to modify bundle_interleaved and bundle_id --> r=%d c=%d",r,c);
#endif
bundle_id=c*coreset_interleaver_size_R+r;
bundle_interleaved=(r*coreset_C+c+n_shift)%(coreset_nbr_rb * coreset_time_dur/reg_bundle_size_L);
}
if (coreset_interleaved == 1){
//wptr[i+(bundle_interleaved-bundle_id)*9*reg_bundle_size_L]=wbar[i];
#ifdef NR_PDCCH_DCI_DEBUG
printf("\n\t\t\t\t\t\t\t\t\t wptr[%d] <-> wbar[%d]",i,i+(bundle_interleaved-bundle_id)*9*reg_bundle_size_L);
#endif
wptr[i]=wbar[i+(bundle_interleaved-bundle_id)*9*reg_bundle_size_L];
#ifdef NR_PDCCH_DCI_DEBUG
printf("\t\t bundle_id = %d \t bundle_interleaved = %d\n",bundle_id,bundle_interleaved);
#endif
i++;
} else {
wptr[i]=wbar[i];
i++;
}
//bundle_id=c*coreset_interleaver_size_R+r;
}
}
#endif
void pdcch_deinterleaving(NR_DL_FRAME_PARMS *frame_parms,uint16_t *z, uint16_t *wbar,uint8_t number_pdcch_symbols,uint8_t mi)
{
uint16_t *wptr,*zptr,*wptr2;
uint16_t Mquad=get_nquad(number_pdcch_symbols,frame_parms,mi);
uint32_t RCC = (Mquad>>5), ND;
uint32_t row,col,Kpi,index;
int32_t i,k;
// printf("Mquad %d, RCC %d\n",Mquad,RCC);
if (!z) {
printf("dci.c: pdcch_deinterleaving: FATAL z is Null\n");
return;
}
// undo permutation
for (i=0; i<Mquad; i++) {
wptr = &wtemp_rx[((i+frame_parms->Nid_cell)%Mquad)<<2];
wptr2 = &wbar[i<<2];
wptr[0] = wptr2[0];
wptr[1] = wptr2[1];
wptr[2] = wptr2[2];
wptr[3] = wptr2[3];
/*
printf("pdcch_deinterleaving (%p,%p): quad %d (%d) -> (%d,%d %d,%d %d,%d %d,%d)\n",wptr,wptr2,i,(i+frame_parms->Nid_cell)%Mquad,
((char*)wptr2)[0],
((char*)wptr2)[1],
((char*)wptr2)[2],
((char*)wptr2)[3],
((char*)wptr2)[4],
((char*)wptr2)[5],
((char*)wptr2)[6],
((char*)wptr2)[7]);
*/
}
if ((Mquad&0x1f) > 0)
RCC++;
Kpi = (RCC<<5);
ND = Kpi - Mquad;
k=0;
for (col=0; col<32; col++) {
index = bitrev_cc_dci[col];
for (row=0; row<RCC; row++) {
// printf("row %d, index %d, Nd %d\n",row,index,ND);
if (index>=ND) {
wptr = &wtemp_rx[k<<2];
zptr = &z[(index-ND)<<2];
zptr[0] = wptr[0];
zptr[1] = wptr[1];
zptr[2] = wptr[2];
zptr[3] = wptr[3];
/*
printf("deinterleaving ; k %d, index-Nd %d => (%d,%d,%d,%d,%d,%d,%d,%d)\n",k,(index-ND),
((int8_t *)wptr)[0],
((int8_t *)wptr)[1],
((int8_t *)wptr)[2],
((int8_t *)wptr)[3],
((int8_t *)wptr)[4],
((int8_t *)wptr)[5],
((int8_t *)wptr)[6],
((int8_t *)wptr)[7]);
*/
k++;
}
index+=32;
}
}
for (i=0; i<Mquad; i++) {
zptr = &z[i<<2];
/*
printf("deinterleaving ; quad %d => (%d,%d,%d,%d,%d,%d,%d,%d)\n",i,
((int8_t *)zptr)[0],
((int8_t *)zptr)[1],
((int8_t *)zptr)[2],
((int8_t *)zptr)[3],
((int8_t *)zptr)[4],
((int8_t *)zptr)[5],
((int8_t *)zptr)[6],
((int8_t *)zptr)[7]);
*/
}
}
int32_t pdcch_qpsk_qpsk_llr(NR_DL_FRAME_PARMS *frame_parms,
int32_t **rxdataF_comp,
int32_t **rxdataF_comp_i,
int32_t **rho_i,
int16_t *pdcch_llr16,
int16_t *pdcch_llr8in,
uint8_t symbol)
{
int16_t *rxF=(int16_t*)&rxdataF_comp[0][(symbol*frame_parms->N_RB_DL*12)];
int16_t *rxF_i=(int16_t*)&rxdataF_comp_i[0][(symbol*frame_parms->N_RB_DL*12)];
int16_t *rho=(int16_t*)&rho_i[0][(symbol*frame_parms->N_RB_DL*12)];
int16_t *llr128;
int32_t i;
char *pdcch_llr8;
int16_t *pdcch_llr;
pdcch_llr8 = (char *)&pdcch_llr8in[symbol*frame_parms->N_RB_DL*12];
pdcch_llr = &pdcch_llr16[symbol*frame_parms->N_RB_DL*12];
// printf("dlsch_qpsk_qpsk: symbol %d\n",symbol);
llr128 = (int16_t*)pdcch_llr;
if (!llr128) {
printf("dlsch_qpsk_qpsk_llr: llr is null, symbol %d\n",symbol);
return -1;
}
qpsk_qpsk(rxF,
rxF_i,
llr128,
rho,
frame_parms->N_RB_DL*12);
//prepare for Viterbi which accepts 8 bit, but prefers 4 bit, soft input.
for (i=0; i<(frame_parms->N_RB_DL*24); i++) {
if (*pdcch_llr>7)
*pdcch_llr8=7;
else if (*pdcch_llr<-8)
*pdcch_llr8=-8;
else
*pdcch_llr8 = (char)(*pdcch_llr);
pdcch_llr++;
pdcch_llr8++;
}
return(0);
}
#ifdef NR_PDCCH_DCI_RUN
int32_t nr_pdcch_llr(NR_DL_FRAME_PARMS *frame_parms, int32_t **rxdataF_comp,
char *pdcch_llr, uint8_t symbol,uint32_t coreset_nbr_rb) {
int16_t *rxF = (int16_t*) &rxdataF_comp[0][(symbol * frame_parms->N_RB_DL * 12)];
int32_t i;
char *pdcch_llr8;
pdcch_llr8 = &pdcch_llr[2 * symbol * frame_parms->N_RB_DL * 12];
if (!pdcch_llr8) {
printf("pdcch_qpsk_llr: llr is null, symbol %d\n", symbol);
return (-1);
}
#ifdef NR_PDCCH_DCI_DEBUG
printf("\t\t<-NR_PDCCH_DCI_DEBUG (nr_pdcch_llr)-> llr logs: pdcch qpsk llr for symbol %d (pos %d), llr offset %d\n",symbol,(symbol*frame_parms->N_RB_DL*12),pdcch_llr8-pdcch_llr);
#endif
//for (i = 0; i < (frame_parms->N_RB_DL * ((symbol == 0) ? 16 : 24)); i++) {
for (i = 0; i < (coreset_nbr_rb * ((symbol == 0) ? 18 : 18)); i++) {
if (*rxF > 31)
*pdcch_llr8 = 31;
else if (*rxF < -32)
*pdcch_llr8 = -32;
else
*pdcch_llr8 = (char) (*rxF);
#ifdef NR_PDCCH_DCI_DEBUG
printf("\t\t<-NR_PDCCH_DCI_DEBUG (nr_pdcch_llr)-> llr logs: i=%d *rxF:%d => *pdcch_llr8:%d\n",i/18,i,*rxF,*pdcch_llr8);
#endif
rxF++;
pdcch_llr8++;
}
return (0);
}
#endif
int32_t pdcch_llr(NR_DL_FRAME_PARMS *frame_parms,
int32_t **rxdataF_comp,
char *pdcch_llr,
uint8_t symbol)
{
int16_t *rxF= (int16_t*) &rxdataF_comp[0][(symbol*frame_parms->N_RB_DL*12)];
int32_t i;
char *pdcch_llr8;
pdcch_llr8 = &pdcch_llr[2*symbol*frame_parms->N_RB_DL*12];
if (!pdcch_llr8) {
printf("pdcch_qpsk_llr: llr is null, symbol %d\n",symbol);
return(-1);
}
// printf("pdcch qpsk llr for symbol %d (pos %d), llr offset %d\n",symbol,(symbol*frame_parms->N_RB_DL*12),pdcch_llr8-pdcch_llr);
for (i=0; i<(frame_parms->N_RB_DL*((symbol==0) ? 16 : 24)); i++) {
if (*rxF>31)
*pdcch_llr8=31;
else if (*rxF<-32)
*pdcch_llr8=-32;
else
*pdcch_llr8 = (char)(*rxF);
// printf("%d %d => %d\n",i,*rxF,*pdcch_llr8);
rxF++;
pdcch_llr8++;
}
return(0);
}
//__m128i avg128P;
//compute average channel_level on each (TX,RX) antenna pair
void pdcch_channel_level(int32_t **dl_ch_estimates_ext,
NR_DL_FRAME_PARMS *frame_parms,
int32_t *avg,
uint8_t nb_rb)
{
int16_t rb;
uint8_t aatx,aarx;
#if defined(__x86_64__) || defined(__i386__)
__m128i *dl_ch128;
__m128i avg128P;
#elif defined(__arm__)
int16x8_t *dl_ch128;
int32x4_t *avg128P;
#endif
for (aatx=0; aatx<frame_parms->nb_antenna_ports_eNB; aatx++)
for (aarx=0; aarx<frame_parms->nb_antennas_rx; aarx++) {
//clear average level
#if defined(__x86_64__) || defined(__i386__)
avg128P = _mm_setzero_si128();
dl_ch128=(__m128i *)&dl_ch_estimates_ext[(aatx<<1)+aarx][0];
#elif defined(__arm__)
#endif
for (rb=0; rb<nb_rb; rb++) {
#if defined(__x86_64__) || defined(__i386__)
avg128P = _mm_add_epi32(avg128P,_mm_madd_epi16(dl_ch128[0],dl_ch128[0]));
avg128P = _mm_add_epi32(avg128P,_mm_madd_epi16(dl_ch128[1],dl_ch128[1]));
avg128P = _mm_add_epi32(avg128P,_mm_madd_epi16(dl_ch128[2],dl_ch128[2]));
#elif defined(__arm__)
#endif
dl_ch128+=3;
/*
if (rb==0) {
print_shorts("dl_ch128",&dl_ch128[0]);
print_shorts("dl_ch128",&dl_ch128[1]);
print_shorts("dl_ch128",&dl_ch128[2]);
}
*/
}
DevAssert( nb_rb );
avg[(aatx<<1)+aarx] = (((int32_t*)&avg128P)[0] +
((int32_t*)&avg128P)[1] +
((int32_t*)&avg128P)[2] +
((int32_t*)&avg128P)[3])/(nb_rb*12);
// printf("Channel level : %d\n",avg[(aatx<<1)+aarx]);
}
#if defined(__x86_64__) || defined(__i386__)
_mm_empty();
_m_empty();
#endif
}
#if defined(__x86_64) || defined(__i386__)
__m128i mmtmpPD0,mmtmpPD1,mmtmpPD2,mmtmpPD3;
#elif defined(__arm__)
#endif
/*
void pdcch_dual_stream_correlation(NR_DL_FRAME_PARMS *frame_parms,
uint8_t symbol,
int32_t **dl_ch_estimates_ext,
int32_t **dl_ch_estimates_ext_i,
int32_t **dl_ch_rho_ext,
uint8_t output_shift)
{
uint16_t rb;
#if defined(__x86_64__) || defined(__i386__)
__m128i *dl_ch128,*dl_ch128i,*dl_ch_rho128;
#elif defined(__arm__)
#endif
uint8_t aarx;
// printf("dlsch_dual_stream_correlation: symbol %d\n",symbol);
for (aarx=0; aarx<frame_parms->nb_antennas_rx; aarx++) {
#if defined(__x86_64__) || defined(__i386__)
dl_ch128 = (__m128i *)&dl_ch_estimates_ext[aarx][symbol*frame_parms->N_RB_DL*12];
dl_ch128i = (__m128i *)&dl_ch_estimates_ext_i[aarx][symbol*frame_parms->N_RB_DL*12];
dl_ch_rho128 = (__m128i *)&dl_ch_rho_ext[aarx][symbol*frame_parms->N_RB_DL*12];
#elif defined(__arm__)
#endif
for (rb=0; rb<frame_parms->N_RB_DL; rb++) {
// multiply by conjugated channel
#if defined(__x86_64__) || defined(__i386__)
mmtmpPD0 = _mm_madd_epi16(dl_ch128[0],dl_ch128i[0]);
// print_ints("re",&mmtmpPD0);
// mmtmpD0 contains real part of 4 consecutive outputs (32-bit)
mmtmpPD1 = _mm_shufflelo_epi16(dl_ch128[0],_MM_SHUFFLE(2,3,0,1));
mmtmpPD1 = _mm_shufflehi_epi16(mmtmpPD1,_MM_SHUFFLE(2,3,0,1));
mmtmpPD1 = _mm_sign_epi16(mmtmpPD1,*(__m128i*)&conjugate[0]);
// print_ints("im",&mmtmpPD1);
mmtmpPD1 = _mm_madd_epi16(mmtmpPD1,dl_ch128i[0]);
// mmtmpD1 contains imag part of 4 consecutive outputs (32-bit)
mmtmpPD0 = _mm_srai_epi32(mmtmpPD0,output_shift);
// print_ints("re(shift)",&mmtmpPD0);
mmtmpPD1 = _mm_srai_epi32(mmtmpPD1,output_shift);
// print_ints("im(shift)",&mmtmpPD1);
mmtmpPD2 = _mm_unpacklo_epi32(mmtmpPD0,mmtmpPD1);
mmtmpPD3 = _mm_unpackhi_epi32(mmtmpPD0,mmtmpPD1);
// print_ints("c0",&mmtmpPD2);
// print_ints("c1",&mmtmpPD3);
dl_ch_rho128[0] = _mm_packs_epi32(mmtmpPD2,mmtmpPD3);
//print_shorts("rx:",dl_ch128_2);
//print_shorts("ch:",dl_ch128);
//print_shorts("pack:",rho128);
// multiply by conjugated channel
mmtmpPD0 = _mm_madd_epi16(dl_ch128[1],dl_ch128i[1]);
// mmtmpPD0 contains real part of 4 consecutive outputs (32-bit)
mmtmpPD1 = _mm_shufflelo_epi16(dl_ch128[1],_MM_SHUFFLE(2,3,0,1));
mmtmpPD1 = _mm_shufflehi_epi16(mmtmpPD1,_MM_SHUFFLE(2,3,0,1));
mmtmpPD1 = _mm_sign_epi16(mmtmpPD1,*(__m128i*)conjugate);
mmtmpPD1 = _mm_madd_epi16(mmtmpPD1,dl_ch128i[1]);
// mmtmpPD1 contains imag part of 4 consecutive outputs (32-bit)
mmtmpPD0 = _mm_srai_epi32(mmtmpPD0,output_shift);
mmtmpPD1 = _mm_srai_epi32(mmtmpPD1,output_shift);
mmtmpPD2 = _mm_unpacklo_epi32(mmtmpPD0,mmtmpPD1);
mmtmpPD3 = _mm_unpackhi_epi32(mmtmpPD0,mmtmpPD1);
dl_ch_rho128[1] =_mm_packs_epi32(mmtmpPD2,mmtmpPD3);
//print_shorts("rx:",dl_ch128_2+1);
//print_shorts("ch:",dl_ch128+1);
//print_shorts("pack:",rho128+1);
// multiply by conjugated channel
mmtmpPD0 = _mm_madd_epi16(dl_ch128[2],dl_ch128i[2]);
// mmtmpPD0 contains real part of 4 consecutive outputs (32-bit)
mmtmpPD1 = _mm_shufflelo_epi16(dl_ch128[2],_MM_SHUFFLE(2,3,0,1));
mmtmpPD1 = _mm_shufflehi_epi16(mmtmpPD1,_MM_SHUFFLE(2,3,0,1));
mmtmpPD1 = _mm_sign_epi16(mmtmpPD1,*(__m128i*)conjugate);
mmtmpPD1 = _mm_madd_epi16(mmtmpPD1,dl_ch128i[2]);
// mmtmpPD1 contains imag part of 4 consecutive outputs (32-bit)
mmtmpPD0 = _mm_srai_epi32(mmtmpPD0,output_shift);
mmtmpPD1 = _mm_srai_epi32(mmtmpPD1,output_shift);
mmtmpPD2 = _mm_unpacklo_epi32(mmtmpPD0,mmtmpPD1);
mmtmpPD3 = _mm_unpackhi_epi32(mmtmpPD0,mmtmpPD1);
dl_ch_rho128[2] = _mm_packs_epi32(mmtmpPD2,mmtmpPD3);
//print_shorts("rx:",dl_ch128_2+2);
//print_shorts("ch:",dl_ch128+2);
//print_shorts("pack:",rho128+2);
dl_ch128+=3;
dl_ch128i+=3;
dl_ch_rho128+=3;
#elif defined(__arm__)
#endif
}