Skip to content
Snippets Groups Projects
Commit 8b54524e authored by Gustavo Rama's avatar Gustavo Rama
Browse files

added readme

parent 34c88b3f
No related branches found
No related tags found
No related merge requests found
Code to compute quinary orthogonal modular forms.
Files:
- quinary_module_l.sage: Sage file with the functions to compute the quinary omfs.
- hypergeom.m: magma code to compute some hypergeometric motives.
- genera_squarefree_2-2000.sobj: Sage sobj file, it is a dictionary with keys the squarefree numbers
in [2, 2000], for every D as before it has a list of quinary qf representative for every genus.
Example:
The following example shows how to compute de space of orthogonal modular forms
in the case of trivial weight (d = 1), and non trivial weight (d = 167) for a lattice of
discriminant 167.
In the trivial weight case we choose a one dimensional Hecke eigenfunction and
compute some of the Tpk eigenvalues.
We do the same for the non trivial weight case.
sage: load('quinary_module_l.sage)
sage: quins = load('genera_squarefree_2-2000.sobj')
sage: qmod = quinary_module(quins[167][0])
sage: qmod.decompose(d = 1)
[Free module of degree 19 and rank 1 over Integer Ring
Echelon basis matrix:
[ 1 10 60 20 30 30 60 120 30 20 30 10 60 5 20 10 30 30 5],
Free module of degree 19 and rank 1 over Integer Ring
Echelon basis matrix:
[ 0 0 1 -1 -1 1 0 -1 0 -1 -1 0 2 1 -1 0 0 1 0],
Free module of degree 19 and rank 2 over Integer Ring
Echelon basis matrix:
[ 0 0 1 -1 0 -1 0 0 -1 0 1 1 0 0 0 0 0 0 0]
[ 0 0 0 0 1 1 0 -2 -1 1 -1 1 1 -1 -2 0 0 2 0],
Free module of degree 19 and rank 15 over Integer Ring
Echelon basis matrix:
[ 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1]
[ 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1]
[ 0 0 1 1 0 0 0 0 0 0 1 0 2 0 0 0 0 0 -5]
[ 0 0 0 2 0 0 0 0 0 0 0 1 6 0 0 0 0 -3 -6]
[ 0 0 0 0 1 0 0 0 0 0 0 0 2 0 0 0 0 -1 -2]
[ 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 -2]
[ 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 -1]
[ 0 0 0 0 0 0 0 2 0 0 0 0 0 0 1 0 0 2 -5]
[ 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 1 -3]
[ 0 0 0 0 0 0 0 0 0 1 0 0 3 0 1 0 0 0 -5]
[ 0 0 0 0 0 0 0 0 0 0 3 -1 0 0 0 0 0 3 -5]
[ 0 0 0 0 0 0 0 0 0 0 0 0 12 -1 0 0 0 -6 -5]
[ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 3 -5]
[ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 -1]
[ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 -1]]
sage: v = qmod.decompose()[1].0
sage: for p in primes(14):
....: p, qmod.eigenvalue_tp_d(p, v, 1)
....:
(2, -2)
(3, 0)
(5, -2)
(7, 2)
(11, -14)
(13, -34)
sage: for p in primes(6):
....: p, qmod.eigenvalue_tp2_d(p, v, 1)
....:
(2, 2)
(3, -17)
(5, 16)
sage: for p in primes(14):
....: p, qmod.eigenvalue_tp_d(p, v, 167)
....:
(2, -8)
(3, -10)
(5, -4)
(7, -14)
(11, -22)
(13, -4)
sage: for p in primes(6):
....: p, qmod.eigenvalue_tp2_d(p, v, 167)
....:
(2, 10)
(3, 11)
(5, -44)
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please to comment