An Event-B Specification of CCTx_Abstract_DLT_m1

CONTEXT CCTx_Abstract_DLT _cl
SETS
GATEWAYS
SOURCE_TRANSACTIONS
CROSS_CHAIN_SMART_CONTRACTS
SMART_.CONTRACT_EVENTS
TARGET_TRANSACTIONS
CONSTANTS
source_smart_contract
target_smart_contract
gateway
AXIOMS
axml;: source_smart_contract € CROSS_.CHAIN_SMART_CONTRACTS
axm2;: target_smart_contract € CROSS_-CHAIN_SMART CONTRACTS
axm3;: gateway € GATEWAY S
END

MACHINE CCTx_Abstract_ DLT_m1l
SEES CCTx_Abstract_DLT cl
VARIABLES
received_source_transactions
emitted_events
subscriptions
gateway_pending_events
received_target_transactions
INVARIANTS
invil: received_source_transactions € CROSS_ CHAIN_SMART CONTRACTS+SOURCE_TRANSACTIONS

inv2: emitted_events € CROSS_ CHAIN_SMART CONTRACTS<SMART CONTRACT_EVENTS

inv3: subscriptions € GATEWAY S <+ CROSS_.CHAIN_SMART_CONTRACTS
invd: gateway_pending_events € GATEW AY S <+ TARGET TRANSACTIONS
invb: received_target_transactions € CROSS_ CHAIN_SMART_ CONTRACTS+TARGET TRANSACTIONS

EVENTS
Initialisation
begin
actl: received_source_transactions := &
act2: emitted_events := &
act3: subscriptions := &
actd: gateway_pending_events := &
act6: received_target_transactions := &
end
Event SUBSCRIBE_.SMART_CONTRACT_EVENTS (ordinary) =
when
grdl: gateway — source_smart_contract ¢ subscriptions
The gateway is not already subscribed to the smart contract events
then
actl: subscriptions := subscriptions U {gateway — source_smart_contract}
The gateway is subscribed to listen to the smart contract events
end

10.04.2024 16:10 Page 1 of 13



An Event-B Specification of CCTx_Abstract_DLT_m1

Event INITIATE_CC_TX (ordinary) =

any
transaction
where
grdl: transaction € SOURCE_ TRANSACTIONS
grd3: transaction ¢ received_source_transactions[{source_smart_contract}]
The transaction was not received by the smart contract
then
actl: received_source_transactions := received_source_transactions U {source_smart_contract —
transaction}
Add the transaction to the received transactions of the smart contract
end
Event EMIT _EVENT (ordinary) =
any

transaction
emitted_event
where
grdl: source_smart_contract — transaction € received_source_transactions
The smart contract has a pending transaction to process
grd2: emitted_event ¢ emitted_events[{source_smart_contract}|
The smart contract will always emit a new event
then
actl: emitted_events := emitted_events U {source_smart_contract — emitted_event}
The smart contract emits a new event related to the transaction processing

act2: received_source_transactions := received_source_transactions \ {source_smart_contract —
transaction}
The smart contract processed the transaction
end
Event LISTEN_EVENT (ordinary) =
any

emitted_event
pending_event
where
grdl: source_smart_contract — emitted_event € emitted_events
The smart contract has emitted an event
grd2: gateway — source_smart_contract € subscriptions
Exist a subscription to the smart contract events
grd3: gateway — pending_event ¢ gateway-pending_-events
The event was not already listened
then
actl: gateway-pending-events := gateway-pending_events U {gateway — pending-event}
The event is added to the pending events to be processed by the gateway
act2: emitted_events := emitted_events \ {source_smart_contract — emitted_event}
The event is removed from the pending events to listen
end

10.04.2024 16:10 Page 2 of 13



An Event-B Specification of CCTx_Abstract_DLT_m1

Event SUBMIT_TX (ordinary) =
any
pending_event
transaction
where
grdl: gateway — pending-event € gateway-pending_-events
There is one pending event to be processed
grd2: transaction € TARGET TRANSACTIONS
then
actl: received_target_transactions := received_target_transactions U {target_smart_contract —
transaction}
The transaction is received by the target smart contract
act2: gateway_pending_events := gateway_pending_events \ {gateway — pending_event}
Remove the event from the pending events of the gateway
end

END

10.04.2024 16:10 Page 3 of 13



An Event-B Specification of CCTx_Ethereum_Fabric_.m2

CONTEXT CCTx_Ethereum_Fabric_c2
EXTENDS CCTx_Abstract_DLT cl
SETS

PERMISSIONS

USERS
CONSTANTS

read

write

gateway_user
AXIOMS

axmll: partition(PERMISSIONS, {read}, {write})
Only two types of permissions exist: read and write (REQ1)

axml12: gateway_user € USERS
The gateway has a Fabric user

END

MACHINE CCTx_Ethereum_Fabric_.m2

REFINES CCTx_Abstract_ DLT_ml

SEES CCTx_Ethereum_Fabric_c2

VARIABLES
received_source_transactions
emitted_events
subscriptions
gateway_pending_events
received_target_transactions
authenticated_users
authenticated_transactions
grants

INVARIANTS

invil: authenticated_users C USERS
Authenticated users are a subset of all the possible users

inv12: authenticated_transactions € received_target_transactions — authenticated_users

Authenticated transactions are received transactions submitted by an authenticated user

inv13:
Viz-tz € received_target_transactions = (Ju-u €
authenticated_users A tx — u € authenticated_transactions)
Every submitted transaction to Fabric must be authenticated (REQ4)

invi4: grants € authenticated_users <> PERMISSIONS
Users with read or write permissions

invi5: Vu-u € authenticated_transactions|received_target_transactions] = u — write € grants

Authenticated users that submitted a transaction must have write permissions (REQ5)
EVENTS
Initialisation (extended)
begin
actl: received_source_transactions := &
act2: emitted_events := @
act3: subscriptions := &
act4d: gateway_pending_events := &
act6: received_target_transactions := &
actll: authenticated_users := @
actl12: authenticated_transactions := @
actl4d: grants := @
end

10.04.2024 16:10

Page 4 of 13



An Event-B Specification of CCTx_Ethereum_Fabric_.m2

I

Event SUBSCRIBE_.SMART_CONTRACT_EVENTS_IN_ETHEREUM (ordinary)
extends SUBSCRIBE_SMART_CONTRACT_EVENTS

when
grdl: gateway — source_smart_contract ¢ subscriptions
The gateway is not already subscribed to the smart contract events
then
actl: subscriptions := subscriptions U {gateway — source_smart_contract}
The gateway is subscribed to listen to the smart contract events
end

Event INITIATE_.CC_TX_IN_.ETHEREUM (ordinary) =
extends INITIATE_CC_TX

any
transaction
where
grdi: transaction € SOURCE_TRANSACTIONS
grd3: transaction ¢ received_source_transactions[{source_smart_contract}]
The transaction was not received by the smart contract
then
actl: received_source_transactions := received_source_transactions U {source_smart_contract —
transaction}
Add the transaction to the received transactions of the smart contract
end

Event EMIT_EVENT_IN_ETHEREUM (ordinary) =
extends EMIT_EVENT
any
transaction
emitted_event
where
grdl: source_smart_contract — transaction € received_source_transactions
The smart contract has a pending transaction to process
grd2: emitted_event ¢ emitted_events[{source_smart_contract}]
The smart contract will always emit a new event
then
actl: emitted_events := emitted_events U {source_smart_contract — emitted_event}
The smart contract emits a new event related to the transaction processing
act2: received_source_transactions := received_source_transactions \ {source_smart_contract —
transaction}
The smart contract processed the transaction
end

Event LISTEN_EVENT_IN_ETHEREUM (ordinary) =
extends LISTEN_EVENT

any
emitted_event
pending_event
where
grdl: source_smart_contract — emitted_event € emitted_events
The smart contract has emitted an event
grd2: gateway — source_smart_contract € subscriptions
Exist a subscription to the smart contract events
grd3: gateway — pending_event ¢ gateway_pending_events
The event was not already listened
then
actl: gateway-pending_events := gateway_pending_events U {gateway — pending_event}
The event is added to the pending events to be processed by the gateway
act2: emitted_events := emitted_events \ {source_smart_contract — emitted_event}
The event is removed from the pending events to listen
end

10.04.2024 16:10 Page 5 of 13



An Event-B Specification of CCTx_Ethereum_Fabric_.m2

Event SUBMIT_TX_TO_FABRIC (ordinary) =
extends SUBMIT_TX

any
pending_event
transaction
user

where

grdl: gateway — pending_-event € gateway_pending_events
There is one pending event to be processed
grd2: transaction € TARGET TRANSACTIONS
grdil: wuser € authenticated_users
Only allow authenticated users (REQ6)
grdl2: wuser — write € grants
Only allow authorized users (REQT)
then
actl: received_target_transactions := received_target_transactions U {target_smart_contract —
transaction}
The transaction is received by the target smart contract
act2: gateway_pending_events := gateway_pending_events \ {gateway — pending_event}
Remove the event from the pending events of the gateway
actll: authenticated_transactions(target_smart_contract — transaction) := user
Every submitted transaction to Fabric must be authenticated
end
Event CREATE_GATEWAY _USER (ordinary) =

when
grdl: gateway-user ¢ authenticated_users
then
actl: authenticated_users := authenticated_users U {gateway_user}
Create credentials for a user (e.g. gateway) to authenticate them (REQ2)
end
Event GRANT_PERMISSION (ordinary) =
any
permission
user
where
grdl: permission € PERMISSIONS
grd2: wuser € authenticated_users
grd3: wser — permission ¢ grants
then
actl: grants:= grants U {user — permission}
Grant permissions (e.g. write) to users (e.g. gateway) in Fabric (REQ3)
end
END

10.04.2024 16:10 Page 6 of 13



An Event-B Specification of CCTx_Fabric_Ethereum_m2

CONTEXT CCTx_Fabric_Ethereum_c2
EXTENDS CCTx_Abstract_DLT cl
SETS

ADDRESS
CONSTANTS

gateway_address
AXIOMS

axmll;: gateway-address € ADDRESS
END

MACHINE CCTx_Fabric_Ethereum_m?2
REFINES CCTx_Abstract_ DLT_m1l
SEES CCTx_Fabric_Ethereum_c2
VARIABLES

received_source_transactions

emitted_events

subscriptions

gateway_pending_events

received_target_transactions

accounts
INVARIANTS

invil: accounts € ADDRESS + N

The balance of each address must be equal or greater than zero (REQ4)

EVENTS
Initialisation (extended)
begin

actl: received_source_transactions := &

act2: emitted_events := &
act3: subscriptions := &
act4d: gateway_pending_events := &

act6: received_target_transactions := @

actll: accounts := O
end

Event SUBSCRIBE_SMART_CONTRACT_EVENTS_IN_FABRIC (ordinary) =
extends SUBSCRIBE_SMART_CONTRACT_EVENTS

when

grdl: gateway — source_smart_contract ¢ subscriptions
The gateway is not already subscribed to the smart contract events

then

actl: subscriptions := subscriptions U {gateway — source_smart_contract}
The gateway is subscribed to listen to the smart contract events

end

Event INITIATE_.CC_TX_IN_FABRIC (ordinary) =

extends INITIATE_CC_TX
any
transaction
where

grdl: transaction € SOURCE_TRANSACTIONS
grd3: transaction ¢ received_source_transactions[{source_smart_contract}]
The transaction was not received by the smart contract

then

actl: received_source_transactions := received_source_transactions U {source_smart_contract —

transaction}

Add the transaction to the received transactions of the smart contract

end

10.04.2024 16:10

Page 7 of 13



An Event-B Specification of CCTx_Fabric_Ethereum_m2

Event EMIT_EVENT_IN_FABRIC (ordinary) =
extends EMIT EVENT
any
transaction
emitted_event
where
grdl: source_smart_contract — transaction € received_source_transactions
The smart contract has a pending transaction to process
grd2: emitted_event ¢ emitted_events[{source_smart_contract}]
The smart contract will always emit a new event
then
actl: emitted_events := emitted_events U {source_smart_contract — emitted_event}
The smart contract emits a new event related to the transaction processing
act2: received_source_transactions := received_source_transactions \ {source_smart_contract —
transaction}
The smart contract processed the transaction
end
Event LISTEN_EVENT_IN_FABRIC (ordinary) =
extends LISTEN_EVENT
any
emitted_event
pending_event
where
grdl: source_smart_contract — emitted_event € emitted_events
The smart contract has emitted an event
grd2: gateway — source_smart_contract € subscriptions
Exist a subscription to the smart contract events
grd3: gateway — pending_event ¢ gateway_pending_events
The event was not already listened
then
actl: gateway_pending-events := gateway_pending-events U {gateway — pending_event}
The event is added to the pending events to be processed by the gateway
act2: emitted_events := emitted_events \ {source_smart_contract — emitted_event}
The event is removed from the pending events to listen
end

Event SUBMIT_TX_TO_ETHEREUM (ordinary) =
extends SUBMIT_TX

any
pending_event
transaction
fee
where
grdl: gateway — pending_-event € gateway_pending_-events
There is one pending event to be processed
grd2: transaction € TARGET TRANSACTIONS
grdll: gateway-address € dom(accounts)
grdl2: accounts(gateway-address) > fee
The gateway has enough balance to pay the validators fee (REQ5)
grdi3: fee >0
then
actl: received_target_transactions := received_target_transactions U {target_smart_contract —
transaction}
The transaction is received by the target smart contract
act2: gateway_pending_events := gateway_pending_events \ {gateway — pending_event}
Remove the event from the pending events of the gateway
actll: accounts(gateway_address) := accounts(gateway_address) — fee
The fee is subtracted from the gateways account (REQ5)
end

10.04.2024 16:10 Page 8 of 13



An Event-B Specification of CCTx_Fabric_Ethereum_m2

Event CREATE_ADDRESS_.IN_.ETHEREUM (ordinary) =
Users can create their address on Ethereum (REQ1 and REQ2)

any
address
where
grdl: address € ADDRESS
grd2: address ¢ dom(accounts)
then
actl: accounts := accounts U {address — 0}
end

Event DEPOSIT_CRYPTOCURRENCY_IN_ETHEREUM (ordinary) =
Users (including the gateway) can deposit Ethers on their address (REQ3)

any
amount
address
where
grdl: amount >0
grd2: address € dom(accounts)
then
actl: accounts(address) := accounts(address) + amount
end

Event SUBMIT_TRANSFER_TRANSACTION_IN_.ETHEREUM (ordinary) =
The user can transfer an estimated fee to the gateways account (REQ1)
any
validator_fee
user_address
transfer_amount
where
grdl: wuser_address € dom(accounts)
The user has an account
grd2: accounts(user_address) > validator_fee + transfer_amount
The user has enough balance to do the transfer and pay the validator’s fee
grd3: walidator_fee >0
grd4: transfer_amount >0
grd5: gateway_address € dom(accounts)
The gateway has an account
grde6: ({user_address, gateway_address}<accounts)U{gateway_address — accounts(gateway_address)+
transfer_amount}U{user_address — accounts(user_address)—trans fer_amount—validator_fee} €

ADDRESS + N

then

actl:

accounts := ({user_address, gateway_address} < accounts) U
{gateway_address — accounts(gateway-address) + transfer_amount} U
{user_address — accounts(user_address) — transfer_amount — validator_fee}
Subtracts the transfer amount and fee from the user’s account and add the transfer amount to
the gateways account

end

END

10.04.2024 16:10 Page 9 of 13



An Event-B Specification of CCTx_Preserve_Balance_Gateway_m3

CONTEXT CCTx_Preserve_Balance_Gateway_c3
EXTENDS CCTx_Fabric_Ethereum_c2
END

MACHINE CCTx_Preserve_Balance_Gateway_m3
REFINES CCTx_Fabric_Ethereum_m2
SEES CCTx_Fabric_Ethereum_c2
VARIABLES
received_source_transactions
emitted_events
subscriptions
gateway_pending_events
received_target_transactions
accounts

estimated_cross_chain_cost

INVARIANTS
inv31: estimated_cross_chain_cost € N
EVENTS

Initialisation (extended)

begin
actl: received_source_transactions := &
act2: emitted_events .= @
act3: subscriptions := &
actd: gateway_pending_events := &
act6: received_target_transactions := &
actll: accounts := O
act31: estimated_cross_chain_cost := 0

end

Event SUBSCRIBE_.SMART_CONTRACT_EVENTS_IN_FABRIC (ordinary) =
extends SUBSCRIBE_SMART_CONTRACT_EVENTS_IN_FABRIC

when
grdl: gateway — source_smart_contract ¢ subscriptions
The gateway is not already subscribed to the smart contract events
then
actl: subscriptions := subscriptions U {gateway — source_smart_contract}
The gateway is subscribed to listen to the smart contract events
end

Event INITIATE_CC_TX_IN_FABRIC (ordinary) =
extends INITIATE CC_TX_IN_FABRIC
any
transaction
where
grdl: transaction € SOURCE_TRANSACTIONS
grd3: transaction ¢ received_source_transactions[{source_smart_contract}]
The transaction was not received by the smart contract
then
actl: received_source_transactions := received_source_transactions U {source_smart_contract —
transaction}
Add the transaction to the received transactions of the smart contract
end

10.04.2024 16:10 Page 10 of 13



An Event-B Specification of CCTx_Preserve_Balance_Gateway_m3

Event EMIT_EVENT_IN_FABRIC (ordinary) =
extends EMIT EVENT_IN_FABRIC
any
transaction
emitted_event
where
grdl: source_smart_contract — transaction € received_source_transactions
The smart contract has a pending transaction to process
grd2: emitted_event ¢ emitted_events[{source_smart_contract}]
The smart contract will always emit a new event
then
actl: emitted_events := emitted_events U {source_smart_contract — emitted_event}
The smart contract emits a new event related to the transaction processing
act2: received_source_transactions := received_source_transactions \ {source_smart_contract —
transaction}
The smart contract processed the transaction
end

Event LISTEN_EVENT_IN_FABRIC (ordinary) =
extends LISTEN_EVENT_IN_FABRIC
any
emitted_event
pending_event
where
grdl: source_smart_contract — emitted_event € emitted_events
The smart contract has emitted an event
grd2: gateway — source_smart_contract € subscriptions
Exist a subscription to the smart contract events
grd3: gateway — pending_event ¢ gateway_pending_events
The event was not already listened
then
actl: gateway_pending-events := gateway_pending-events U {gateway — pending_event}
The event is added to the pending events to be processed by the gateway
act2: emitted_events := emitted_events \ {source_smart_contract — emitted_event}
The event is removed from the pending events to listen
end

10.04.2024 16:10 Page 11 of 13



An Event-B Specification of CCTx_Preserve_Balance_Gateway_m3

Event SUBMIT_TX_TO_ETHEREUM (ordinary) =
extends SUBMIT_TX_ TO_ETHEREUM
any
pending_event
transaction
fee
where
grdl: gateway — pending_-event € gateway_pending_events
There is one pending event to be processed
grd2: transaction € TARGET TRANSACTIONS
grdll: gateway-address € dom(accounts)
grd12: accounts(gateway_address) > fee
The gateway has enough balance to pay the validators fee (REQ5)
grd13: fee >0
grd31: fee < estimated_-cross_chain_cost
Check that the estimated fee is greater or equal to the validators fee (RQ2)
then
actl: received_target_transactions := received_target_transactions U {target_smart_contract —
transaction}
The transaction is received by the target smart contract
act2: gateway-_pending-events := gateway_pending-events \ {gateway — pending_event}
Remove the event from the pending events of the gateway
actll: accounts(gateway_address) := accounts(gateway_address) — fee
The fee is subtracted from the gateways account (REQ5)
end
Event CREATE_ADDRESS_IN_ETHEREUM (ordinary) =
extends CREATE_ADDRESS_IN_ ETHEREUM
any
address
where
grdl: address € ADDRESS
grd2: address ¢ dom(accounts)
then
actl: accounts := accounts U {address — 0}
end

Event DEPOSIT_CRYPTOCURRENCY _IN_ ETHEREUM (ordinary) =
extends DEPOSIT_CRYPTOCURRENCY_IN_ETHEREUM

any
amount
address
where

grdl: amount >0
grd2: address € dom(accounts)
grd31l: address # gateway_address
The gateway cannot deposit in its own account (RQ3)
then
actl: accounts(address) := accounts(address) + amount
end

10.04.2024 16:10 Page 12 of 13



An Event-B Specification of CCTx_Preserve_Balance_Gateway_m3

Event SUBMIT_TRANSFER_-TRANSACTION_IN_.ETHEREUM (ordinary) =
extends SUBMIT_TRANSFER_TRANSACTION_IN_ETHEREUM
any
validator_fee
user_address
transfer_amount
where
grdl: wuser_address € dom(accounts)
The user has an account
grd2: accounts(user_address) > validator_fee + transfer_amount
The user has enough balance to do the transfer and pay the validator’s fee
grd3: walidator_fee > 0
grd4: transfer_amount >0
grd5: gateway_address € dom(accounts)
The gateway has an account
grd6: ({user_address, gateway_address}<accounts)U{gateway_address — accounts(gateway_address)+
trans fer_amount}U{user_address — accounts(user_address)—trans fer_amount—validator_fee} €

ADDRESS - N
then
actl:
accounts := ({user_address, gateway_address} < accounts) U
{gateway_address — accounts(gateway-address) + trans fer_amount} U
{user_address — accounts(user_address) — transfer_amount — validator_fee}
Subtracts the transfer amount and fee from the user’s account and add the transfer amount to
the gateways account
act31: estimated_cross_chain_cost := transfer_amount
end
END

10.04.2024 16:10 Page 13 of 13



