From ceeea7bcc2786e9dfb1c4e5ab7d6592e789d323c Mon Sep 17 00:00:00 2001 From: "Robert L. Read" <read.robert@gmail.com> Date: Sun, 14 Mar 2021 13:33:54 -0500 Subject: [PATCH] incoporationg respiration_math.js into the main file so that it can be served from a local file system. Also, more accuratly renamed server.js to serialserver.js --- breath_plot.html | 721 +++++++++++++++++- js/respiration_math.js => respiration_math.js | 0 server.js => serialserver.js | 0 3 files changed, 719 insertions(+), 2 deletions(-) rename js/respiration_math.js => respiration_math.js (100%) rename server.js => serialserver.js (100%) diff --git a/breath_plot.html b/breath_plot.html index 0773b0c..990fbec 100644 --- a/breath_plot.html +++ b/breath_plot.html @@ -26,9 +26,16 @@ Breath Plot: COVID-19 Respiration Analysis Software <link rel="stylesheet" href="https://stackpath.bootstrapcdn.com/bootstrap/4.4.1/css/bootstrap.min.css" integrity="sha384-Vkoo8x4CGsO3+Hhxv8T/Q5PaXtkKtu6ug5TOeNV6gBiFeWPGFN9MuhOf23Q9Ifjh" crossorigin="anonymous"> <!-- Load plotly.js into the DOM --> - <script src='https://cdn.plot.ly/plotly-latest.min.js'></script> + <script src='https://cdn.plot.ly/plotly-latest.min.js'></script> + <script src="https://ajax.googleapis.com/ajax/libs/jquery/3.4.1/jquery.min.js"></script> + + <!-- NOTE: I have included respiration_math.js wholesale below. +This allows breath_plot to be used locally, which may be valuable +for some purposes, without a browser pointing at the file, instead +of served with python -m http.server, Apache, etc. <script src='/respiration_math.js'></script> +--> <title>Public Invention Respiration Analysis</title> @@ -518,7 +525,717 @@ an interactive or static analysis of a respiration. It's primary purpose is </div> </body> - <script src="https://ajax.googleapis.com/ajax/libs/jquery/3.4.1/jquery.min.js"></script> + + + <!-- NOTE: This is respiration_math.js. +I HOPE it is separately valuable to anyone doing breath calculations +in Javascript. For that reason it is also separately in the repo, +or you can cut this out. +--> + + <script> +const CONVERT_PIRDS_TO_SLM = 1/1000; + +function unpack(rows, key) { + return rows.map(function(row) { return row[key]; }); +} + + +function compute_transitions(vm,flows) { + var transitions = []; + var state = 0; // Let 1 mean inspiration, -1 mean expiration, 0 neither + for(var i = 0; i < flows.length; i++) { + var f = flows[i].val * CONVERT_PIRDS_TO_SLM; + // var ms = flows[i].ms-first_time; + var ms = flows[i].ms; + if (state == 0) { + if (f > vm) { + state = 1; + transitions.push({ state: 1, sample: i, ms: ms}) + } else if (f < -vm) { + state = -1; + transitions.push({ state: -1, sample: i, ms: ms}) + } + } else if (state == 1) { + if (f < -vm) { + state = -1; + transitions.push({ state: -1, sample: i, ms: ms}) + } else if (f < vm) { + state = 0; + transitions.push({ state: 0, sample: i, ms: ms}) + } + } else if (state == -1) { + if (f > vm) { + state = 1; + transitions.push({ state: 1, sample: i, ms: ms}) + } else if (f > 0) { + state = 0; + transitions.push({ state: 0, sample: i, ms: ms}) + } + } + } + return transitions; +} + +// Return, [min,avg,max] pressures (no smoothing)! +function compute_pressures(secs,samples,alarms,limits) { + var pressures = samples.filter(s => s.event == 'M' && s.type == 'D' && (s.loc == 'I' || s.loc == 'A')); + + if (pressures.length == 0) { + return [0,0,0,[]]; + } else { + const recent_ms = pressures[pressures.length - 1].ms; + var cur_ms = recent_ms; + var cnt = 0.0; + var i = pressures.length - 1; + var cur_sample = pressures[i]; + + var min = Number.MAX_VALUE; + var max = Number.MIN_VALUE; + var sum = 0; + var alarms = []; + while((i >=0) && (pressures[i].ms > (cur_ms - secs*1000))) { + var p = pressures[i].val / 10.0; // this is now cm H2O + if (p < min ) { + min = p; + } + if (p > max) { + max = p; + } + sum += p; + cnt++; + alarms = alarms.concat(check_alarms(limits,"max","h",p,(a,b) =>(a > b),pressures[i].ms)); + alarms = alarms.concat(check_alarms(limits,"max","l",p,(a,b) =>(a < b),pressures[i].ms)); + i--; + } + return [min,sum/cnt,max,alarms]; + } +} + + +function compute_fio2_mean(secs,samples) { + var oxygens = samples.filter(s => s.event == 'M' && s.type == 'O' && (s.loc == 'I' || s.loc == 'A')); + + if (oxygens.length == 0) { + return null; + } else { + const recent_ms = oxygens[oxygens.length - 1].ms; + var cur_ms = recent_ms; + var cnt = 0.0; + var i = oxygens.length - 1; + + var sum = 0; + var alarms = []; + while((i >=0) && (oxygens[i].ms > (cur_ms - secs*1000))) { + var oxy = oxygens[i].val; // oxygen concentration as a percentage + sum += oxy; + cnt++; + i--; + } + + var fio2_avg = sum / cnt; + + return fio2_avg; + } +} + +// WARNING! With a low number of breaths, this may be wrong. +function compute_respiration_rate(secs,samples,transitions,breaths) { + // In order to compute the number of breaths + // in the last s seconds, I compute those breaths + // whose time stamp is s seconds from the most recent sample + + // We will compute respiration rate by counting breaths + // and dividing (cnt - 1) by time the first and last inhalation + var first_inhale_ms = -1; + var last_inhale_ms = -1; + if (breaths.length == 0) { + return [0,0,0,"NA","NA"]; + } else { + const recent_ms = samples[samples.length - 1].ms; + var cur_ms = recent_ms; + var cnt = 0.0; + var vol_i = 0.0; + var vol_e = 0.0; + var i = breaths.length - 1; + var time_inh = 0; + var time_exh = 0; + // fully completed inhalation volume does not include the + // most recent breath; we need it to be able to accurately + // divide by the inhlation_duration. + var vol_ci = 0.0; + + var wob = 0.0; + var wob_cnt = 0; + + while((i >=0) && (breaths[i].ms > (cur_ms - secs*1000))) { + cnt++; + vol_i += breaths[i].vol_i; + if (i < (breaths.length -1)) { + vol_ci += breaths[i].vol_i; + } + vol_e += breaths[i].vol_e; + + const inh_ms = transitions[breaths[i].trans_begin_inhale].ms; + // note i is counting down in this loop... + if (last_inhale_ms < 0) last_inhale_ms = inh_ms; + first_inhale_ms = inh_ms; + const exh_ms = transitions[breaths[i].trans_end_exhale].ms; + const zero_ms = transitions[breaths[i].trans_cross_zero].ms; + time_inh += (zero_ms - inh_ms); + time_exh += (exh_ms - zero_ms); + + if (breaths[i].work != null) { + wob += breaths[i].work / breaths[i].vol_i; + wob_cnt++; + } + i--; + } + if ((cnt > 1) && (first_inhale_ms != last_inhale_ms)) { + // I now think this math is specious!! + var inhalation_duration = last_inhale_ms - first_inhale_ms; + var inhalation_duration_min = inhalation_duration / (60.0 * 1000.0); + var rr = (cnt - 1) / inhalation_duration_min; + var duration_minutes = secs / 60.0; + + // This is liters per minute. vol_ci is in liters. + // inhalation_duration is in ms. + var minute_volume = vol_ci / inhalation_duration_min; + + var tidal_volume = 1000.0 * vol_i / cnt; + + var EIratio = (time_inh == 0) ? null : time_exh / time_inh; + var WorkOfBreathing_J_per_L = wob / wob_cnt; + return [ + rr, + tidal_volume, + minute_volume, + EIratio, + WorkOfBreathing_J_per_L]; + } else { + return [0,0,0,"NA","NA"]; + } + } +} + + +// produces a set of rising signals, time in ms of the leading edge of the rise and the trailing edge of the rise +// an array of 2-tuple +// taip == true implies compute TAIP, else compute TRIP +// Possibly this routine should be generalized to a general rise-time routine. +function compute_TAIP_or_TRIP_signals(min,max,pressures,taip) { + var pressures = pressures.filter(s => s.event == 'M' && s.type == 'D' && (s.loc == 'I' || s.loc == 'A')); + const responseBegin = 0.1; + const responseEnd = 0.9; + + var signals = []; + var foundMinSignal = false; + + const highFence = (min + (responseEnd * (max - min)))*10; + const lowFence = (min + (responseBegin * (max - min)))*10; + + var cur_signal_start; + var state = -1; // Let 1 mean rising, -1 mean fallen, 0 risen, but not fallen + var first_sample_index = taip ? 0 : pressures.length-1 ; + var last_sample_index = taip ? pressures.length-1 : 0; + var increment = taip ? 1 : -1; + for(var i = first_sample_index; i != last_sample_index; i+=increment) { + var p = pressures[i].val; + var ms = pressures[i].ms; + if (state == -1) { + if (p >= lowFence) { + state = 1; + cur_signal_start = pressures[i]; + } + if (p >= highFence){ + signals.push([ms,ms]); + } + } else if (state == 1) { + //console.log("state = 1",cur_signal_start); for debugging + if (p >= highFence) { + signals.push(taip ? [cur_signal_start.ms,ms] : [ms,cur_signal_start.ms]) + state = 0; + } else if (p <= lowFence) { + state = -1; + cur_signal_start = null; + } + } else if (state == 0) { + if (p <= lowFence) { + state = -1; + } + } + } + return signals; +} + +function compute_mean_TRIP_or_TAIP_sigs(sigs,min,max,pressures,taip){ + if (sigs.length == 0){ + return "NA"; + } else { + var sum = 0; + for(var i = 0; i < sigs.length; i++) { + sum += sigs[i][1] - sigs[i][0]; // time in ms + } + return sum / sigs.length; + } +} + +function testdata(){ + //0 (not good enough), 10 (rising), 20 (above threshold) all 10 ms apart + //saw tooth function + var data = []; // pushing 50 things into it + for(var i = 0; i < 10; i++) { + var ms = i*5*10; + data[i*5+0] = {event:'M',loc:'I',ms:ms + 0,type:'D',val: 0}; + data[i*5+1] = {event:'M',loc:'I',ms:ms + 10,type:'D',val: 100}; + data[i*5+2] = {event:'M',loc:'I',ms:ms + 20,type:'D',val: 200}; + data[i*5+3] = {event:'M',loc:'I',ms:ms + 30,type:'D',val: 100}; + data[i*5+4] = {event:'M',loc:'I',ms:ms + 40,type:'D',val: 0}; + } + return data; +} + +function testdataSine(period_sm){ // period expressed in # of samples, each sample 10 ms + //0 (not good enough), 10 (rising), 20 (above threshold) all 10 ms apart + //sine tooth function + var data = []; // pushing 50 things into it + for(var i = 0; i < 1000; i++) { + var ms = i*10; + data[i] = {event:'M',loc:'I',ms:ms + 20,type:'D',val: 200*Math.sin(2*Math.PI*i/period_sm)}; + } + return data; +} + +function compute_mean_TRIP_or_TAIP(min,max,samples,taip) { + return compute_mean_TRIP_or_TAIP_sigs( + compute_TAIP_or_TRIP_signals(min,max,samples,taip), + min,max,samples,taip); +} + +function test_compute_TAIP() { + var samples = testdata(); + const TAIP_min = 0; // cm of H2O + const TAIP_max = 20; // cm of H2O + var TAIP_m = compute_mean_TRIP_or_TAIP(min,max,samples,true); + console.assert(TAIP_m == 10); + for (i = 50; i<150; i+=10) { + var sinewave = testdataSine(i); + var TAIP_m = compute_mean_TRIP_or_TAIP(min,max,sinewave,true); + } +} + +function compute_current_TAIP(TAIP_min,TAIP_max){ //uses samples from a global var + var TAIP_m = compute_mean_TRIP_or_TAIP(TAIP_min,TAIP_max,samples,true); + return TAIP_m; +} + +// Because TAIP and TRIP are symmetric when viewed from +// from the direction of the samples; this tests that +// as a prelude to computing a single way. + +function reverseArray(arr) { + var newArray = []; + for (var i = arr.length - 1; i >= 0; i--) { + newArray.push(arr[i]); + } + return newArray; +} +function test_TRIP_and_TAIP_are_symmetric() { + var samples = testdata(); + var rsamples = reverseArray(samples); + const min = 0; + const max = 20; + var TRIP_m = compute_mean_TRIP_or_TAIP(min,max,samples,false); + var TRIP_m_r = -compute_mean_TRIP_or_TAIP(min,max,rsamples,true); + console.assert(TRIP_m == TRIP_m_r); + console.assert(TRIP_m == 10); + for (i = 50; i<150; i+=10) { + var sinewave = testdataSine(i); + var rsinewave = reverseArray(sinewave); + var TRIP_m = compute_mean_TRIP_or_TAIP(min,max,samples,false); + var TRIP_m_r = -compute_mean_TRIP_or_TAIP(min,max,rsamples,true); + console.assert(TRIP_m == TRIP_m_r); + var TAIP_m = compute_mean_TRIP_or_TAIP(min,max,samples,true); + var TAIP_m_r = -compute_mean_TRIP_or_TAIP(min,max,rsamples,false); + console.assert(TAIP_m == TAIP_m_r); + } +} + +function compute_current_TRIP(TRIP_min,TRIP_max, samples) +{ //uses samples from a global var + if (samples.length == 0){ + return "NA"; + } + else { + var TRIP_m = compute_mean_TAIP_or_TRIP(TRIP_min,TRIP_max,false); + return TRIP_m; + } +} + + + + + // A routine to calculate work per breath +function PressureVolumeWork(breath, transitions, samples) { + // -1 for quadilateral approximation + if (breath.vol_i == 0) { + return null; + } else { + var beginTransition = transitions[breath.trans_begin_inhale]; + var beginTime_ms = beginTransition.ms; + var endTransition = transitions[breath.trans_cross_zero]; + var endTime_ms = endTransition.ms; + var flows = samples.filter(s => s.event == 'M' && s.type == 'F' && + s.ms >= beginTime_ms && s.ms <= endTime_ms); + var pressures = samples.filter(s => s.event == 'M' && s.type == 'D' && + (s.loc == 'I' || s.loc == 'A') && s.ms >= beginTime_ms && s.ms <= endTime_ms); + + // Note: The algorithm below relies on the fact that there is + // only one flow or pressure with a single ms value; and that + // increvementing an index necessarily incremenst the .ms value. + + // Without two samples, we have no duration and can't define + // work. + if (pressures.length < 2 || flows.length < 2) return null; + + var ct = Math.min(flows[0].ms,pressures[0].ms); + var lfp = { val : flows[0].val, ms: flows[0].ms } ; // last flow point + var lpp = { val : pressures[0].val, ms: pressures[0].ms }; // last pressure_point + var fi = increment_past(flows,flows[0].ms,0); // Index of next flow sample + var pi = increment_past(pressures,pressures[0].ms,0); // Index of next pressure sample + var w = 0; // current work + + // compute flow at time ms give index and last point + // This is just a simple linear interpolation + function f(ms,cur,last) { + var ms0 = last.ms; + var ms1 = cur.ms; + return last.val + (cur.val - last.val)*(ms - ms0)/(ms1 - ms0); + } + function increment_past(array,ms,index) { + var begin = index; + while(index < array.length && array[index].ms <= ms) + index++; + if (index == begin) debugger; + if (index >= array.length) + return null; + else + return index; + } + + // A fundamental invariant: + // pressures[pi].ms > lpp.ms + // flows[pi].ms > lfp.ms + while ((fi + pi) < (flows.length + pressures.length)) { + // Invariant always increment fi or pi + // fi and pi point to unprocessed value + console.assert(pressures[pi].ms > lpp.ms); + console.assert(flows[fi].ms > lfp.ms); + var ms; + if (pressures[pi].ms <= flows[fi].ms) { // process pressure + ms = pressures[pi].ms; + pi = increment_past(pressures,ms,pi); + if (flows[fi].ms <= ms) { + fi = increment_past(flows,ms,fi); + } + } else { + ms = flows[fi].ms; + fi = increment_past(flows,ms,fi); + if (pressures[pi].ms <= ms) { + pi = increment_past(pressures,ms,pi); + } + } + if ((fi === null) || (pi === null)) + break; + var dur_s = (ms - ct) / 1000; + console.assert(pressures[pi].ms > lpp.ms); + console.assert(flows[fi].ms > lfp.ms); + var nf = f(ms,flows[fi],lfp); + var np = f(ms,pressures[pi],lpp); + var f1 = (lfp.val + nf)/2; + var p1 = (lpp.val + np)/2; + // convert 10ths of cm H2O to pascals.. + var p1_pa = (p1 * 98.0665) / 10; + + // convert flows in lpm to cubic meters per seconds + var f1_m_cubed_per_s = f1 / (1000 * 1000 * 60); + + // work is now in Joules! + w += dur_s * p1_pa * f1_m_cubed_per_s; + lfp = { val : f1, ms: ms }; + lpp = { val : p1, ms: ms }; + ct = ms; + } + return w; + } +} + +// Let's first set up a perfectly square 1-second +function generate_synthetic_trace() { + const SAMPLES_PER_PHASE = 1000; + const SAMPLES_MS_PER_SAMPLE = 1; + var trace = []; + var cur = 0; + // p is a probability of occuring. + function push_samples(start,num,d,f,pd,pf) { + for(var i = start; i < start+num; i++) { + if (Math.random() < pd) { + trace.push( + { + event: "M", + loc: "A", + ms: i, + num: 0, + type: "D", + val: d + }); + } + if (Math.random() < pf) { + trace.push( + { + event: "M", + loc: "A", + ms: i, + num: 0, + type: "F", + val: f + }); + } + } + } + const P1 = 1/2; + const P2 = 1/2; + push_samples(SAMPLES_PER_PHASE,SAMPLES_PER_PHASE,200,50000,P1,P2); + push_samples(0,SAMPLES_PER_PHASE,-200,-50000,P1,P2); + push_samples(SAMPLES_PER_PHASE,SAMPLES_PER_PHASE,200,50000,P1,P2); + push_samples(SAMPLES_PER_PHASE*2,SAMPLES_PER_PHASE,-200,-50000,P1,P2); + push_samples(SAMPLES_PER_PHASE*3,SAMPLES_PER_PHASE,200,50000,P1,P2); + return trace; +} + +function nearp(x,y,d) { + return Math.abs(x - y) <= d; +} + +function testWorkSynthetic(){ // breaths give us inspiration transition points + var samples = generate_synthetic_trace(); + + const JOULES_IN_BREATH = 1 * 1961.33 * 50000 / (60e+6); + + var flows = samples.filter(s => s.event == 'M' && s.type == 'F'); + var first_time = flows[0].ms; + var last_time = flows[flows.length - 1].ms; + var duration = last_time - first_time; + console.log(flows); + + + const vm = 10; + // There is a problem here that this does not create a transition at the beginning. + var transitions = compute_transitions(vm,flows); + var breaths = compute_breaths_based_without_negative_flow(transitions,flows); + console.log(breaths); + for(i = 0; i<breaths.length; i++) { + var w = PressureVolumeWork(breaths[i], transitions, samples); + console.assert((w == null) || (nearp(w,JOULES_IN_BREATH),0.1)); + console.log("final (Joules) = ",w); + } + return true; +} + + + function testWork(samples){ // breaths give us inspiration transition points + var flows = samples.filter(s => s.event == 'M' && s.type == 'F'); + var first_time = flows[0].ms; + var last_time = flows[flows.length - 1].ms; + var duration = last_time - first_time; + console.log(flows); + + const vm = 10; + var transitions = compute_transitions(vm,flows); + var breaths = compute_breaths_based_without_negative_flow(transitions,flows); + console.log(breaths); + for(i = 0; i<breaths.length; i++) { + var w = PressureVolumeWork(breaths[i], transitions, samples); + console.log(w); + } + } + + + + // This should be in liters... + function integrateSamples(a,z,flows) { + // -1 for quadilateral approximation + var vol = 0; + for(var j = a; j < z-1; j++) { + // I'll use qadrilateral approximation. + // We'll form each quadrilateral between two samples. + var ms = flows[j+1].ms - flows[j].ms; + var ht = ((flows[j+1].val + flows[j].val )/2) * CONVERT_PIRDS_TO_SLM; + // Flow is actually in standard liters per minute, + // so to get liters we divide by 60 to it l/s, + // and and divde by 1000 to convert ms to seconds. + // We could do that here, but will move constants + // to end... + vol += ms * ht; + if (isNaN(vol)) { + debugger; + } + } + return vol/(60*1000); + } + + // This is based only on inhalations, and + // is therefore functional when there is a check valve + // in place. Such a system will rarely + // have negative flows, and we must mark + // the beginning of a breath from a transition to a "1" + // state from any other state. + // This algorithm is simple: A breath begins on a trasition + // to 1 from a not 1 state. This algorithm is susceptible + // to "stutter" near the boundary point, but if necessary + // a digital filter would sove that; we have not yet found + // that level of sophistication needed. + // We still want to track zeros, but now must strack them + // as a falling signal. + + function compute_breaths_based_without_negative_flow(transitions,flows) { + var beg = 0; + var zero = 0; + var last = 0; + var voli = 0; + var vole = 0; + + var breaths = []; + var expiring = false; + + for(var i = 0; i < transitions.length; i++) { + // We're looking for the end of the inhalation here!! + if (((i -1) >= 0) && transitions[i-1].state == 1 && + (transitions[i].state == 0 || transitions[i].state == -1 )) { + zero = i; + } + if (expiring && transitions[i].state == 1) { + breaths.push({ ms: transitions[i].ms, + sample: transitions[i].sample, + vol_e: vole, + vol_i: voli, + trans_begin_inhale: beg, + trans_cross_zero: zero, + trans_end_exhale: i, + } + ); + var w = PressureVolumeWork(breaths[breaths.length-1], transitions, samples); + breaths[breaths.length-1].work = w; + beg = i; + expiring = false; + vole = integrateSamples(last,transitions[i].sample,flows); + + last = transitions[i].sample; + } + if (!expiring && ((transitions[i].state == -1) || (transitions[i].state == 0))) { + expiring = true; + voli = integrateSamples(last,transitions[i].sample,flows); + last = transitions[i].sample; + } + } + return breaths; + } + + +// A simple computation of a moving window trace +// computing [A + -B], where A is volume to left +// of sample int time window t, and B is volume to right +// t is in milliseconds +function computeMovingWindowTrace(samples,t,v) { + + var flows = samples.filter(s => s.event == 'M' && s.type == 'F'); + + if (flows.length == 0) { + return [[],[]]; + } + var first_time = flows[0].ms; + var last_time = flows[flows.length - 1].ms; + var duration = last_time - first_time; + + // Here is an idea... + // We define you to be in one of three states: + // Inspiring, expiring, or neither. + // Every transition between these states is logged. + // Having two inspirations between an expiration is + // weird but could happen. + // We record transitions. + // When the time series crossed a fixed threshold + // or zero, it causes a transition. If you are inspiring, + // you have to cross zero to transition to neither, + // and you start expiring when you cross the treshold. + + // This is measured in standard liters per minute. + const vm = 10; // previously used 4 + + // We will model this as a list of transitions. + // A breath is any number of inspirations followed by + // any number of expirations. (I+)(E+) + + var transitions = compute_transitions(vm,flows); + + // Now that we have transitions, we can apply a + // diferrent algorithm to try to define "breaths". + // Because a breath is defined as an inspiration + // and then an expiration, we will define a breath + // as from the first inspiration, until there has + // been one expiration, until the next inspiration. + var breaths = []; + var expiring = false; + + function compute_breaths_based_on_exhalations(transitions) { + var beg = 0; + var zero = 0; + var last = 0; + var voli = 0; + var vole = 0; + + // This code was robust when I breathed through a mask, + // but on clean simulations with negative flow, seemes to + // go awry... + // It think really it makes more sense to find the first + // transition from a non-inspiring state to an inspiring state + // and start there. + for(var i = 0; i < transitions.length; i++) { + // We're looking for the end of the inhalation here!! + if (((i -1) >= 0) && transitions[i-1].state == 1 && (transitions[i].state == 0 || transitions[i].state == -1 )) { + zero = i; + } + if (expiring && transitions[i].state == 1) { + breaths.push({ ms: transitions[i].ms, + sample: transitions[i].sample, + vol_e: vole, + vol_i: voli, + trans_begin_inhale: beg, + trans_cross_zero: zero, + trans_end_exhale: i, + } + ); + var w = PressureVolumeWork(breaths[0], transitions, samples); + breaths[0].work = w; + beg = i; + expiring = false; + vole = integrateSamples(last,transitions[i].sample,flows); + last = transitions[i].sample; + } + if (!expiring && (transitions[i].state == -1)) { + expiring = true; + voli = integrateSamples(last,transitions[i].sample,flows); + last = transitions[i].sample; + } + } + } + + breaths = compute_breaths_based_without_negative_flow(transitions,flows); + + return [transitions,breaths]; +} + </script> + <script> diff --git a/js/respiration_math.js b/respiration_math.js similarity index 100% rename from js/respiration_math.js rename to respiration_math.js diff --git a/server.js b/serialserver.js similarity index 100% rename from server.js rename to serialserver.js -- GitLab