diff --git a/breath_plot.html b/breath_plot.html
index 0773b0ca8759f2df1f9e0a7f6891ba787002734e..990fbece556460f07638f187700bafcf69329452 100644
--- a/breath_plot.html
+++ b/breath_plot.html
@@ -26,9 +26,16 @@ Breath Plot: COVID-19 Respiration Analysis Software
     <link rel="stylesheet" href="https://stackpath.bootstrapcdn.com/bootstrap/4.4.1/css/bootstrap.min.css" integrity="sha384-Vkoo8x4CGsO3+Hhxv8T/Q5PaXtkKtu6ug5TOeNV6gBiFeWPGFN9MuhOf23Q9Ifjh" crossorigin="anonymous">
 
 	<!-- Load plotly.js into the DOM -->
-  <script src='https://cdn.plot.ly/plotly-latest.min.js'></script>
+    <script src='https://cdn.plot.ly/plotly-latest.min.js'></script>
 
+    <script src="https://ajax.googleapis.com/ajax/libs/jquery/3.4.1/jquery.min.js"></script>
+
+  <!-- NOTE: I have included respiration_math.js wholesale below.
+This allows breath_plot to be used locally, which may be valuable
+for some purposes, without a browser pointing at the file, instead
+of served with python -m http.server, Apache, etc.
   <script src='/respiration_math.js'></script>
+-->
 
   <title>Public Invention Respiration Analysis</title>
 
@@ -518,7 +525,717 @@ an interactive or static analysis of a respiration. It&#39;s primary purpose is
 
 </div>
 </body>
-  <script src="https://ajax.googleapis.com/ajax/libs/jquery/3.4.1/jquery.min.js"></script>
+
+
+  <!-- NOTE: This is respiration_math.js.
+I HOPE it is separately valuable to anyone doing breath calculations
+in Javascript. For that reason it is also separately in the repo,
+or you can cut this out.
+-->
+
+  <script>
+const CONVERT_PIRDS_TO_SLM = 1/1000;
+
+function unpack(rows, key) {
+    return rows.map(function(row) { return row[key]; });
+}
+
+
+function compute_transitions(vm,flows) {
+  var transitions = [];
+  var state = 0; // Let 1 mean inspiration, -1 mean expiration, 0 neither
+  for(var i = 0; i < flows.length; i++) {
+    var f = flows[i].val * CONVERT_PIRDS_TO_SLM;
+    //    var ms = flows[i].ms-first_time;
+    var ms = flows[i].ms;
+    if (state == 0) {
+      if (f > vm) {
+	state = 1;
+	transitions.push({ state: 1, sample: i, ms: ms})
+      } else if (f < -vm) {
+	state = -1;
+	transitions.push({ state: -1, sample: i, ms: ms})
+      }
+    } else if (state == 1) {
+      if (f < -vm) {
+	state = -1;
+	transitions.push({ state: -1, sample: i, ms: ms})
+      } else if (f < vm) {
+	state = 0;
+	transitions.push({ state: 0, sample: i, ms: ms})
+      }
+    } else if (state == -1) {
+      if (f > vm) {
+	state = 1;
+	transitions.push({ state: 1, sample: i, ms: ms})
+      } else if (f > 0) {
+	state = 0;
+	transitions.push({ state: 0, sample: i, ms: ms})
+      }
+    }
+  }
+  return transitions;
+}
+
+// Return, [min,avg,max] pressures (no smoothing)!
+function compute_pressures(secs,samples,alarms,limits) {
+  var pressures = samples.filter(s => s.event == 'M' && s.type == 'D' && (s.loc == 'I' || s.loc == 'A'));
+
+  if (pressures.length == 0) {
+    return [0,0,0,[]];
+  } else {
+    const recent_ms = pressures[pressures.length - 1].ms;
+    var cur_ms = recent_ms;
+    var cnt = 0.0;
+    var i = pressures.length - 1;
+    var cur_sample = pressures[i];
+
+    var min = Number.MAX_VALUE;
+    var max = Number.MIN_VALUE;
+    var sum = 0;
+    var alarms = [];
+    while((i >=0) && (pressures[i].ms > (cur_ms - secs*1000))) {
+      var p = pressures[i].val / 10.0;  // this is now cm H2O
+      if (p < min ) {
+        min = p;
+      }
+      if (p > max) {
+        max = p;
+      }
+      sum += p;
+      cnt++;
+      alarms = alarms.concat(check_alarms(limits,"max","h",p,(a,b) =>(a > b),pressures[i].ms));
+      alarms = alarms.concat(check_alarms(limits,"max","l",p,(a,b) =>(a < b),pressures[i].ms));
+      i--;
+    }
+    return [min,sum/cnt,max,alarms];
+  }
+}
+
+
+function compute_fio2_mean(secs,samples) {
+  var oxygens = samples.filter(s => s.event == 'M' && s.type == 'O' && (s.loc == 'I' || s.loc == 'A'));
+
+  if (oxygens.length == 0) {
+    return null;
+  } else {
+    const recent_ms = oxygens[oxygens.length - 1].ms;
+    var cur_ms = recent_ms;
+    var cnt = 0.0;
+    var i = oxygens.length - 1;
+
+    var sum = 0;
+    var alarms = [];
+    while((i >=0) && (oxygens[i].ms > (cur_ms - secs*1000))) {
+      var oxy = oxygens[i].val; // oxygen concentration as a percentage
+      sum += oxy;
+      cnt++;
+      i--;
+    }
+
+    var fio2_avg = sum / cnt;
+
+    return fio2_avg;
+  }
+}
+
+// WARNING! With a low number of breaths, this may be wrong.
+function compute_respiration_rate(secs,samples,transitions,breaths) {
+  // In order to compute the number of breaths
+  // in the last s seconds, I compute those breaths
+  // whose time stamp is s seconds from the most recent sample
+
+  // We will compute respiration rate by counting breaths
+  // and dividing (cnt - 1) by time the first and last inhalation
+  var first_inhale_ms = -1;
+  var last_inhale_ms = -1;
+  if (breaths.length == 0) {
+    return [0,0,0,"NA","NA"];
+  } else {
+    const recent_ms = samples[samples.length - 1].ms;
+    var cur_ms = recent_ms;
+    var cnt = 0.0;
+    var vol_i = 0.0;
+    var vol_e = 0.0;
+    var i = breaths.length - 1;
+    var time_inh = 0;
+    var time_exh = 0;
+    // fully completed inhalation volume does not include the
+    // most recent breath; we need it to be able to accurately
+    // divide by the inhlation_duration.
+    var vol_ci = 0.0;
+
+    var wob = 0.0;
+    var wob_cnt = 0;
+
+    while((i >=0) && (breaths[i].ms > (cur_ms - secs*1000))) {
+      cnt++;
+      vol_i += breaths[i].vol_i;
+      if (i < (breaths.length -1)) {
+        vol_ci += breaths[i].vol_i;
+      }
+      vol_e += breaths[i].vol_e;
+
+      const inh_ms = transitions[breaths[i].trans_begin_inhale].ms;
+      // note i is counting down in this loop...
+      if (last_inhale_ms < 0) last_inhale_ms = inh_ms;
+      first_inhale_ms = inh_ms;
+      const exh_ms = transitions[breaths[i].trans_end_exhale].ms;
+      const zero_ms = transitions[breaths[i].trans_cross_zero].ms;
+      time_inh += (zero_ms - inh_ms);
+      time_exh += (exh_ms -  zero_ms);
+
+      if (breaths[i].work != null)  {
+        wob += breaths[i].work / breaths[i].vol_i;
+        wob_cnt++;
+      }
+      i--;
+    }
+    if ((cnt > 1) && (first_inhale_ms != last_inhale_ms)) {
+      // I now think this math is specious!!
+      var inhalation_duration = last_inhale_ms - first_inhale_ms;
+      var inhalation_duration_min = inhalation_duration / (60.0 * 1000.0);
+      var rr = (cnt - 1) / inhalation_duration_min;
+      var duration_minutes = secs / 60.0;
+
+      // This is liters per minute. vol_ci is in liters.
+      // inhalation_duration is in ms.
+      var minute_volume =  vol_ci / inhalation_duration_min;
+
+      var tidal_volume = 1000.0 * vol_i / cnt;
+
+      var EIratio = (time_inh == 0) ? null : time_exh / time_inh;
+      var WorkOfBreathing_J_per_L = wob / wob_cnt;
+      return  [
+        rr,
+        tidal_volume,
+        minute_volume,
+        EIratio,
+        WorkOfBreathing_J_per_L];
+    } else {
+      return [0,0,0,"NA","NA"];
+    }
+  }
+}
+
+
+// produces a set of rising signals, time in ms of the leading edge of the rise and the trailing edge of the rise
+// an array of 2-tuple
+// taip == true implies compute TAIP, else compute TRIP
+// Possibly this routine should be generalized to a general rise-time routine.
+function compute_TAIP_or_TRIP_signals(min,max,pressures,taip) {
+  var pressures = pressures.filter(s => s.event == 'M' && s.type == 'D' && (s.loc == 'I' || s.loc == 'A'));
+  const responseBegin = 0.1;
+  const responseEnd = 0.9;
+
+  var signals = [];
+  var foundMinSignal = false;
+
+  const highFence = (min + (responseEnd * (max - min)))*10;
+  const lowFence = (min + (responseBegin * (max - min)))*10;
+
+  var cur_signal_start;
+  var state = -1; // Let 1 mean rising, -1 mean fallen, 0 risen, but not fallen
+  var first_sample_index = taip ? 0 : pressures.length-1 ;
+  var last_sample_index = taip ? pressures.length-1 : 0;
+  var increment = taip ? 1 : -1;
+  for(var i = first_sample_index; i != last_sample_index; i+=increment) {
+    var p = pressures[i].val;
+    var ms = pressures[i].ms;
+    if (state == -1) {
+      if (p >= lowFence) {
+	      state = 1;
+        cur_signal_start = pressures[i];
+      }
+      if (p >= highFence){
+        signals.push([ms,ms]);
+      }
+    } else if (state == 1) {
+      //console.log("state = 1",cur_signal_start); for debugging
+      if (p >= highFence) {
+        signals.push(taip ? [cur_signal_start.ms,ms] : [ms,cur_signal_start.ms])
+        state = 0;
+      } else if (p <= lowFence) {
+        state = -1;
+        cur_signal_start = null;
+      }
+    } else if (state == 0) {
+      if (p <= lowFence) {
+	state = -1;
+      }
+    }
+  }
+  return signals;
+}
+
+function compute_mean_TRIP_or_TAIP_sigs(sigs,min,max,pressures,taip){
+  if (sigs.length == 0){
+    return "NA";
+  } else {
+    var sum = 0;
+    for(var i = 0; i < sigs.length; i++) {
+      sum += sigs[i][1] - sigs[i][0];  // time in ms
+    }
+    return sum / sigs.length;
+  }
+}
+
+function testdata(){
+  //0 (not good enough), 10 (rising), 20 (above threshold) all 10 ms apart
+  //saw tooth function
+  var data = []; // pushing 50 things into it
+  for(var i = 0; i < 10; i++) {
+    var ms = i*5*10;
+    data[i*5+0] = {event:'M',loc:'I',ms:ms + 0,type:'D',val: 0};
+    data[i*5+1] = {event:'M',loc:'I',ms:ms + 10,type:'D',val: 100};
+    data[i*5+2] = {event:'M',loc:'I',ms:ms + 20,type:'D',val: 200};
+    data[i*5+3] = {event:'M',loc:'I',ms:ms + 30,type:'D',val: 100};
+    data[i*5+4] = {event:'M',loc:'I',ms:ms + 40,type:'D',val: 0};
+  }
+  return data;
+}
+
+function testdataSine(period_sm){ // period expressed in # of samples, each sample 10 ms
+  //0 (not good enough), 10 (rising), 20 (above threshold) all 10 ms apart
+  //sine tooth function
+  var data = []; // pushing 50 things into it
+  for(var i = 0; i < 1000; i++) {
+    var ms = i*10;
+    data[i] = {event:'M',loc:'I',ms:ms + 20,type:'D',val: 200*Math.sin(2*Math.PI*i/period_sm)};
+  }
+  return data;
+}
+
+function compute_mean_TRIP_or_TAIP(min,max,samples,taip) {
+  return compute_mean_TRIP_or_TAIP_sigs(
+    compute_TAIP_or_TRIP_signals(min,max,samples,taip),
+    min,max,samples,taip);
+}
+
+function test_compute_TAIP() {
+  var samples = testdata();
+  const TAIP_min = 0; // cm of H2O
+  const TAIP_max = 20; // cm of H2O
+  var TAIP_m = compute_mean_TRIP_or_TAIP(min,max,samples,true);
+  console.assert(TAIP_m == 10);
+  for (i = 50; i<150; i+=10) {
+    var sinewave = testdataSine(i);
+    var TAIP_m = compute_mean_TRIP_or_TAIP(min,max,sinewave,true);
+  }
+}
+
+function compute_current_TAIP(TAIP_min,TAIP_max){ //uses samples from a global var
+  var TAIP_m = compute_mean_TRIP_or_TAIP(TAIP_min,TAIP_max,samples,true);
+  return TAIP_m;
+}
+
+// Because TAIP and TRIP are symmetric when viewed from
+// from the direction of the samples; this tests that
+// as a prelude to computing a single way.
+
+function reverseArray(arr) {
+  var newArray = [];
+  for (var i = arr.length - 1; i >= 0; i--) {
+    newArray.push(arr[i]);
+  }
+  return newArray;
+}
+function test_TRIP_and_TAIP_are_symmetric() {
+  var samples = testdata();
+  var rsamples = reverseArray(samples);
+  const min = 0;
+  const max = 20;
+  var TRIP_m = compute_mean_TRIP_or_TAIP(min,max,samples,false);
+  var TRIP_m_r = -compute_mean_TRIP_or_TAIP(min,max,rsamples,true);
+  console.assert(TRIP_m == TRIP_m_r);
+  console.assert(TRIP_m == 10);
+  for (i = 50; i<150; i+=10) {
+    var sinewave = testdataSine(i);
+    var rsinewave = reverseArray(sinewave);
+    var TRIP_m = compute_mean_TRIP_or_TAIP(min,max,samples,false);
+    var TRIP_m_r = -compute_mean_TRIP_or_TAIP(min,max,rsamples,true);
+    console.assert(TRIP_m == TRIP_m_r);
+    var TAIP_m = compute_mean_TRIP_or_TAIP(min,max,samples,true);
+    var TAIP_m_r = -compute_mean_TRIP_or_TAIP(min,max,rsamples,false);
+    console.assert(TAIP_m == TAIP_m_r);
+  }
+}
+
+function compute_current_TRIP(TRIP_min,TRIP_max, samples)
+{ //uses samples from a global var
+  if (samples.length == 0){
+    return "NA";
+  }
+  else {
+    var TRIP_m = compute_mean_TAIP_or_TRIP(TRIP_min,TRIP_max,false);
+    return TRIP_m;
+  }
+}
+
+
+
+
+  // A routine to calculate work per breath
+function PressureVolumeWork(breath, transitions, samples) {
+  // -1 for quadilateral approximation
+  if (breath.vol_i == 0) {
+    return null;
+  } else {
+    var beginTransition = transitions[breath.trans_begin_inhale];
+    var beginTime_ms = beginTransition.ms;
+    var endTransition = transitions[breath.trans_cross_zero];
+    var endTime_ms = endTransition.ms;
+    var flows = samples.filter(s => s.event == 'M' && s.type == 'F' &&
+                               s.ms >= beginTime_ms && s.ms <= endTime_ms);
+    var pressures = samples.filter(s => s.event == 'M' && s.type == 'D' &&
+                                   (s.loc == 'I' || s.loc == 'A') && s.ms >= beginTime_ms && s.ms <= endTime_ms);
+
+    // Note: The algorithm below relies on the fact that there is
+    // only one flow or pressure with a single ms value; and that
+    // increvementing an index necessarily incremenst the .ms value.
+
+    // Without two samples, we have no duration and can't define
+    // work.
+    if (pressures.length < 2 || flows.length < 2) return null;
+
+    var ct = Math.min(flows[0].ms,pressures[0].ms);
+    var lfp = { val : flows[0].val, ms: flows[0].ms } ; // last flow point
+    var lpp = { val : pressures[0].val, ms: pressures[0].ms }; // last pressure_point
+    var fi = increment_past(flows,flows[0].ms,0); // Index of next flow sample
+    var pi = increment_past(pressures,pressures[0].ms,0); // Index of next pressure sample
+    var w = 0; // current work
+
+    // compute flow at time ms give index and last point
+    // This is just a simple linear interpolation
+    function f(ms,cur,last) {
+      var ms0 = last.ms;
+      var ms1 = cur.ms;
+      return last.val + (cur.val - last.val)*(ms - ms0)/(ms1 - ms0);
+    }
+    function increment_past(array,ms,index) {
+      var begin = index;
+      while(index < array.length && array[index].ms <= ms)
+        index++;
+      if (index == begin) debugger;
+      if (index >= array.length)
+        return null;
+      else
+        return index;
+    }
+
+    // A fundamental invariant:
+    // pressures[pi].ms > lpp.ms
+    // flows[pi].ms > lfp.ms
+    while ((fi + pi) < (flows.length +  pressures.length)) {
+      // Invariant always increment fi or pi
+      // fi and pi point to unprocessed value
+      console.assert(pressures[pi].ms > lpp.ms);
+      console.assert(flows[fi].ms > lfp.ms);
+      var ms;
+      if (pressures[pi].ms <= flows[fi].ms) { // process pressure
+        ms = pressures[pi].ms;
+        pi = increment_past(pressures,ms,pi);
+        if (flows[fi].ms <= ms) {
+          fi = increment_past(flows,ms,fi);
+        }
+      } else {
+        ms = flows[fi].ms;
+        fi = increment_past(flows,ms,fi);
+        if (pressures[pi].ms <= ms) {
+          pi = increment_past(pressures,ms,pi);
+        }
+      }
+      if ((fi === null) || (pi === null))
+        break;
+      var dur_s = (ms - ct) / 1000;
+      console.assert(pressures[pi].ms > lpp.ms);
+      console.assert(flows[fi].ms > lfp.ms);
+      var nf = f(ms,flows[fi],lfp);
+      var np = f(ms,pressures[pi],lpp);
+      var f1 = (lfp.val + nf)/2;
+      var p1 = (lpp.val + np)/2;
+      // convert 10ths of cm H2O to pascals..
+      var p1_pa = (p1 * 98.0665) / 10;
+
+      // convert flows in lpm to cubic meters per seconds
+      var f1_m_cubed_per_s = f1 / (1000 * 1000 * 60);
+
+      // work is now in Joules!
+      w += dur_s * p1_pa * f1_m_cubed_per_s;
+      lfp = { val : f1, ms: ms };
+      lpp = { val : p1, ms: ms };
+      ct = ms;
+    }
+    return w;
+  }
+}
+
+// Let's first set up a perfectly square 1-second
+function generate_synthetic_trace() {
+  const SAMPLES_PER_PHASE = 1000;
+  const SAMPLES_MS_PER_SAMPLE = 1;
+  var trace = [];
+  var cur = 0;
+  // p is a probability of occuring.
+  function push_samples(start,num,d,f,pd,pf) {
+    for(var i = start; i < start+num; i++) {
+      if (Math.random() < pd) {
+        trace.push(
+          {
+            event: "M",
+            loc: "A",
+            ms: i,
+            num: 0,
+            type: "D",
+            val: d
+          });
+      }
+      if (Math.random() < pf) {
+        trace.push(
+          {
+            event: "M",
+            loc: "A",
+            ms: i,
+            num: 0,
+            type: "F",
+            val: f
+          });
+      }
+    }
+  }
+  const P1 = 1/2;
+  const P2 = 1/2;
+  push_samples(SAMPLES_PER_PHASE,SAMPLES_PER_PHASE,200,50000,P1,P2);
+  push_samples(0,SAMPLES_PER_PHASE,-200,-50000,P1,P2);
+  push_samples(SAMPLES_PER_PHASE,SAMPLES_PER_PHASE,200,50000,P1,P2);
+  push_samples(SAMPLES_PER_PHASE*2,SAMPLES_PER_PHASE,-200,-50000,P1,P2);
+  push_samples(SAMPLES_PER_PHASE*3,SAMPLES_PER_PHASE,200,50000,P1,P2);
+  return trace;
+}
+
+function nearp(x,y,d) {
+  return Math.abs(x - y) <= d;
+}
+
+function testWorkSynthetic(){ // breaths give us inspiration transition points
+  var samples = generate_synthetic_trace();
+
+  const JOULES_IN_BREATH = 1 * 1961.33 * 50000 / (60e+6);
+
+  var flows = samples.filter(s => s.event == 'M' && s.type == 'F');
+    var first_time = flows[0].ms;
+    var last_time = flows[flows.length - 1].ms;
+    var duration = last_time - first_time;
+    console.log(flows);
+
+
+  const vm = 10;
+  // There is a problem here that this does not create a transition at the beginning.
+  var transitions = compute_transitions(vm,flows);
+    var breaths = compute_breaths_based_without_negative_flow(transitions,flows);
+    console.log(breaths);
+    for(i = 0; i<breaths.length; i++) {
+      var w = PressureVolumeWork(breaths[i], transitions, samples);
+      console.assert((w == null) || (nearp(w,JOULES_IN_BREATH),0.1));
+      console.log("final (Joules) = ",w);
+    }
+  return true;
+}
+
+
+  function testWork(samples){ // breaths give us inspiration transition points
+    var flows = samples.filter(s => s.event == 'M' && s.type == 'F');
+    var first_time = flows[0].ms;
+    var last_time = flows[flows.length - 1].ms;
+    var duration = last_time - first_time;
+    console.log(flows);
+
+    const vm = 10;
+    var transitions = compute_transitions(vm,flows);
+    var breaths = compute_breaths_based_without_negative_flow(transitions,flows);
+    console.log(breaths);
+    for(i = 0; i<breaths.length; i++) {
+      var w = PressureVolumeWork(breaths[i], transitions, samples);
+      console.log(w);
+    }
+   }
+
+
+
+  // This should be in liters...
+  function integrateSamples(a,z,flows) {
+    // -1 for quadilateral approximation
+    var vol = 0;
+    for(var j = a; j < z-1; j++) {
+      // I'll use qadrilateral approximation.
+      // We'll form each quadrilateral between two samples.
+      var ms = flows[j+1].ms - flows[j].ms;
+      var ht = ((flows[j+1].val + flows[j].val )/2) * CONVERT_PIRDS_TO_SLM;
+      // Flow is actually in standard liters per minute,
+      // so to get liters we divide by 60 to it l/s,
+      // and and divde by 1000 to convert ms to seconds.
+      // We could do that here, but will move constants
+      // to end...
+      vol += ms * ht;
+      if (isNaN(vol)) {
+        debugger;
+      }
+    }
+    return vol/(60*1000);
+  }
+
+  // This is based only on inhalations, and
+  // is therefore functional when there is a check valve
+  // in place. Such a system will rarely
+  // have negative flows, and we must mark
+  // the beginning of a breath from a transition to a "1"
+  // state from any other state.
+  // This algorithm is simple: A breath begins on a trasition
+  // to 1 from a not 1 state. This algorithm is susceptible
+  // to "stutter" near the boundary point, but if necessary
+  // a digital filter would sove that; we have not yet found
+  // that level of sophistication needed.
+  // We still want to track zeros, but now must strack them
+  // as a falling signal.
+
+  function compute_breaths_based_without_negative_flow(transitions,flows) {
+    var beg = 0;
+    var zero = 0;
+    var last = 0;
+    var voli = 0;
+    var vole = 0;
+
+    var breaths = [];
+    var expiring = false;
+
+    for(var i = 0; i < transitions.length; i++) {
+      // We're looking for the end of the inhalation here!!
+      if (((i -1) >= 0) && transitions[i-1].state == 1 &&
+          (transitions[i].state == 0 || transitions[i].state == -1 )) {
+        zero = i;
+      }
+      if (expiring && transitions[i].state == 1) {
+        breaths.push({ ms: transitions[i].ms,
+		       sample: transitions[i].sample,
+		       vol_e: vole,
+		       vol_i: voli,
+                       trans_begin_inhale: beg,
+                       trans_cross_zero: zero,
+                       trans_end_exhale: i,
+		     }
+		    );
+        var w = PressureVolumeWork(breaths[breaths.length-1], transitions, samples);
+        breaths[breaths.length-1].work = w;
+        beg = i;
+        expiring = false;
+        vole = integrateSamples(last,transitions[i].sample,flows);
+
+        last = transitions[i].sample;
+      }
+      if (!expiring && ((transitions[i].state == -1) || (transitions[i].state == 0)))  {
+        expiring = true;
+        voli = integrateSamples(last,transitions[i].sample,flows);
+        last = transitions[i].sample;
+      }
+    }
+    return breaths;
+  }
+
+
+// A simple computation of a moving window trace
+// computing [A + -B], where A is volume to left
+// of sample int time window t, and B is volume to right
+// t is in milliseconds
+function computeMovingWindowTrace(samples,t,v) {
+
+  var flows = samples.filter(s => s.event == 'M' && s.type == 'F');
+
+  if (flows.length == 0) {
+    return [[],[]];
+  }
+  var first_time = flows[0].ms;
+  var last_time = flows[flows.length - 1].ms;
+  var duration = last_time - first_time;
+
+  // Here is an idea...
+  // We define you to be in one of three states:
+  // Inspiring, expiring, or neither.
+  // Every transition between these states is logged.
+  // Having two inspirations between an expiration is
+  // weird but could happen.
+  // We record transitions.
+  // When the time series crossed a fixed threshold
+  // or zero, it causes a transition. If you are inspiring,
+  // you have to cross zero to transition to neither,
+  // and you start expiring when you cross the treshold.
+
+  // This is measured in standard liters per minute.
+  const vm = 10; // previously used 4
+
+  // We will model this as a list of transitions.
+  // A breath is any number of inspirations followed by
+  // any number of expirations. (I+)(E+)
+
+  var transitions = compute_transitions(vm,flows);
+
+  // Now that we have transitions, we can apply a
+  // diferrent algorithm to try to define "breaths".
+  // Because a breath is defined as an inspiration
+  // and then an expiration, we will define a breath
+  // as from the first inspiration, until there has
+  // been one expiration, until the next inspiration.
+  var breaths = [];
+  var expiring = false;
+
+  function compute_breaths_based_on_exhalations(transitions) {
+    var beg = 0;
+    var zero = 0;
+    var last = 0;
+    var voli = 0;
+    var vole = 0;
+
+    // This code was robust when I breathed through a mask,
+    // but on clean simulations with negative flow, seemes to
+    // go awry...
+    // It think really it makes more sense to find the first
+    // transition from a non-inspiring state to an inspiring state
+    // and start there.
+    for(var i = 0; i < transitions.length; i++) {
+      // We're looking for the end of the inhalation here!!
+      if (((i -1) >= 0) && transitions[i-1].state == 1 && (transitions[i].state == 0 || transitions[i].state == -1 )) {
+        zero = i;
+      }
+      if (expiring && transitions[i].state == 1) {
+        breaths.push({ ms: transitions[i].ms,
+		       sample: transitions[i].sample,
+		       vol_e: vole,
+		       vol_i: voli,
+                       trans_begin_inhale: beg,
+                       trans_cross_zero: zero,
+                       trans_end_exhale: i,
+		     }
+		    );
+        var w = PressureVolumeWork(breaths[0], transitions, samples);
+        breaths[0].work = w;
+        beg = i;
+        expiring = false;
+        vole = integrateSamples(last,transitions[i].sample,flows);
+        last = transitions[i].sample;
+      }
+      if (!expiring && (transitions[i].state == -1)) {
+        expiring = true;
+        voli = integrateSamples(last,transitions[i].sample,flows);
+        last = transitions[i].sample;
+      }
+    }
+  }
+
+  breaths = compute_breaths_based_without_negative_flow(transitions,flows);
+
+  return [transitions,breaths];
+}
+    </script>
+
 
   <script>
 
diff --git a/js/respiration_math.js b/respiration_math.js
similarity index 100%
rename from js/respiration_math.js
rename to respiration_math.js
diff --git a/server.js b/serialserver.js
similarity index 100%
rename from server.js
rename to serialserver.js