diff --git a/openair1/SIMULATION/LOLA_DaF_D42/COPYING b/openair1/SIMULATION/LOLA_DaF_D42/COPYING deleted file mode 100644 index 818433ecc0e094a4db1023c68b33f24344643ad8..0000000000000000000000000000000000000000 --- a/openair1/SIMULATION/LOLA_DaF_D42/COPYING +++ /dev/null @@ -1,674 +0,0 @@ - GNU GENERAL PUBLIC LICENSE - Version 3, 29 June 2007 - - Copyright (C) 2007 Free Software Foundation, Inc. <http://fsf.org/> - Everyone is permitted to copy and distribute verbatim copies - of this license document, but changing it is not allowed. - - Preamble - - The GNU General Public License is a free, copyleft license for -software and other kinds of works. - - The licenses for most software and other practical works are designed -to take away your freedom to share and change the works. By contrast, -the GNU General Public License is intended to guarantee your freedom to -share and change all versions of a program--to make sure it remains free -software for all its users. We, the Free Software Foundation, use the -GNU General Public License for most of our software; it applies also to -any other work released this way by its authors. You can apply it to -your programs, too. - - When we speak of free software, we are referring to freedom, not -price. Our General Public Licenses are designed to make sure that you -have the freedom to distribute copies of free software (and charge for -them if you wish), that you receive source code or can get it if you -want it, that you can change the software or use pieces of it in new -free programs, and that you know you can do these things. - - To protect your rights, we need to prevent others from denying you -these rights or asking you to surrender the rights. Therefore, you have -certain responsibilities if you distribute copies of the software, or if -you modify it: responsibilities to respect the freedom of others. - - For example, if you distribute copies of such a program, whether -gratis or for a fee, you must pass on to the recipients the same -freedoms that you received. You must make sure that they, too, receive -or can get the source code. And you must show them these terms so they -know their rights. - - Developers that use the GNU GPL protect your rights with two steps: -(1) assert copyright on the software, and (2) offer you this License -giving you legal permission to copy, distribute and/or modify it. - - For the developers' and authors' protection, the GPL clearly explains -that there is no warranty for this free software. For both users' and -authors' sake, the GPL requires that modified versions be marked as -changed, so that their problems will not be attributed erroneously to -authors of previous versions. - - Some devices are designed to deny users access to install or run -modified versions of the software inside them, although the manufacturer -can do so. This is fundamentally incompatible with the aim of -protecting users' freedom to change the software. The systematic -pattern of such abuse occurs in the area of products for individuals to -use, which is precisely where it is most unacceptable. Therefore, we -have designed this version of the GPL to prohibit the practice for those -products. If such problems arise substantially in other domains, we -stand ready to extend this provision to those domains in future versions -of the GPL, as needed to protect the freedom of users. - - Finally, every program is threatened constantly by software patents. -States should not allow patents to restrict development and use of -software on general-purpose computers, but in those that do, we wish to -avoid the special danger that patents applied to a free program could -make it effectively proprietary. To prevent this, the GPL assures that -patents cannot be used to render the program non-free. - - The precise terms and conditions for copying, distribution and -modification follow. - - TERMS AND CONDITIONS - - 0. Definitions. - - "This License" refers to version 3 of the GNU General Public License. - - "Copyright" also means copyright-like laws that apply to other kinds of -works, such as semiconductor masks. - - "The Program" refers to any copyrightable work licensed under this -License. Each licensee is addressed as "you". "Licensees" and -"recipients" may be individuals or organizations. - - To "modify" a work means to copy from or adapt all or part of the work -in a fashion requiring copyright permission, other than the making of an -exact copy. The resulting work is called a "modified version" of the -earlier work or a work "based on" the earlier work. - - A "covered work" means either the unmodified Program or a work based -on the Program. - - To "propagate" a work means to do anything with it that, without -permission, would make you directly or secondarily liable for -infringement under applicable copyright law, except executing it on a -computer or modifying a private copy. Propagation includes copying, -distribution (with or without modification), making available to the -public, and in some countries other activities as well. - - To "convey" a work means any kind of propagation that enables other -parties to make or receive copies. Mere interaction with a user through -a computer network, with no transfer of a copy, is not conveying. - - An interactive user interface displays "Appropriate Legal Notices" -to the extent that it includes a convenient and prominently visible -feature that (1) displays an appropriate copyright notice, and (2) -tells the user that there is no warranty for the work (except to the -extent that warranties are provided), that licensees may convey the -work under this License, and how to view a copy of this License. If -the interface presents a list of user commands or options, such as a -menu, a prominent item in the list meets this criterion. - - 1. Source Code. - - The "source code" for a work means the preferred form of the work -for making modifications to it. "Object code" means any non-source -form of a work. - - A "Standard Interface" means an interface that either is an official -standard defined by a recognized standards body, or, in the case of -interfaces specified for a particular programming language, one that -is widely used among developers working in that language. - - The "System Libraries" of an executable work include anything, other -than the work as a whole, that (a) is included in the normal form of -packaging a Major Component, but which is not part of that Major -Component, and (b) serves only to enable use of the work with that -Major Component, or to implement a Standard Interface for which an -implementation is available to the public in source code form. A -"Major Component", in this context, means a major essential component -(kernel, window system, and so on) of the specific operating system -(if any) on which the executable work runs, or a compiler used to -produce the work, or an object code interpreter used to run it. - - The "Corresponding Source" for a work in object code form means all -the source code needed to generate, install, and (for an executable -work) run the object code and to modify the work, including scripts to -control those activities. However, it does not include the work's -System Libraries, or general-purpose tools or generally available free -programs which are used unmodified in performing those activities but -which are not part of the work. For example, Corresponding Source -includes interface definition files associated with source files for -the work, and the source code for shared libraries and dynamically -linked subprograms that the work is specifically designed to require, -such as by intimate data communication or control flow between those -subprograms and other parts of the work. - - The Corresponding Source need not include anything that users -can regenerate automatically from other parts of the Corresponding -Source. - - The Corresponding Source for a work in source code form is that -same work. - - 2. Basic Permissions. - - All rights granted under this License are granted for the term of -copyright on the Program, and are irrevocable provided the stated -conditions are met. This License explicitly affirms your unlimited -permission to run the unmodified Program. The output from running a -covered work is covered by this License only if the output, given its -content, constitutes a covered work. This License acknowledges your -rights of fair use or other equivalent, as provided by copyright law. - - You may make, run and propagate covered works that you do not -convey, without conditions so long as your license otherwise remains -in force. You may convey covered works to others for the sole purpose -of having them make modifications exclusively for you, or provide you -with facilities for running those works, provided that you comply with -the terms of this License in conveying all material for which you do -not control copyright. Those thus making or running the covered works -for you must do so exclusively on your behalf, under your direction -and control, on terms that prohibit them from making any copies of -your copyrighted material outside their relationship with you. - - Conveying under any other circumstances is permitted solely under -the conditions stated below. Sublicensing is not allowed; section 10 -makes it unnecessary. - - 3. Protecting Users' Legal Rights From Anti-Circumvention Law. - - No covered work shall be deemed part of an effective technological -measure under any applicable law fulfilling obligations under article -11 of the WIPO copyright treaty adopted on 20 December 1996, or -similar laws prohibiting or restricting circumvention of such -measures. - - When you convey a covered work, you waive any legal power to forbid -circumvention of technological measures to the extent such circumvention -is effected by exercising rights under this License with respect to -the covered work, and you disclaim any intention to limit operation or -modification of the work as a means of enforcing, against the work's -users, your or third parties' legal rights to forbid circumvention of -technological measures. - - 4. Conveying Verbatim Copies. - - You may convey verbatim copies of the Program's source code as you -receive it, in any medium, provided that you conspicuously and -appropriately publish on each copy an appropriate copyright notice; -keep intact all notices stating that this License and any -non-permissive terms added in accord with section 7 apply to the code; -keep intact all notices of the absence of any warranty; and give all -recipients a copy of this License along with the Program. - - You may charge any price or no price for each copy that you convey, -and you may offer support or warranty protection for a fee. - - 5. Conveying Modified Source Versions. - - You may convey a work based on the Program, or the modifications to -produce it from the Program, in the form of source code under the -terms of section 4, provided that you also meet all of these conditions: - - a) The work must carry prominent notices stating that you modified - it, and giving a relevant date. - - b) The work must carry prominent notices stating that it is - released under this License and any conditions added under section - 7. This requirement modifies the requirement in section 4 to - "keep intact all notices". - - c) You must license the entire work, as a whole, under this - License to anyone who comes into possession of a copy. This - License will therefore apply, along with any applicable section 7 - additional terms, to the whole of the work, and all its parts, - regardless of how they are packaged. This License gives no - permission to license the work in any other way, but it does not - invalidate such permission if you have separately received it. - - d) If the work has interactive user interfaces, each must display - Appropriate Legal Notices; however, if the Program has interactive - interfaces that do not display Appropriate Legal Notices, your - work need not make them do so. - - A compilation of a covered work with other separate and independent -works, which are not by their nature extensions of the covered work, -and which are not combined with it such as to form a larger program, -in or on a volume of a storage or distribution medium, is called an -"aggregate" if the compilation and its resulting copyright are not -used to limit the access or legal rights of the compilation's users -beyond what the individual works permit. Inclusion of a covered work -in an aggregate does not cause this License to apply to the other -parts of the aggregate. - - 6. Conveying Non-Source Forms. - - You may convey a covered work in object code form under the terms -of sections 4 and 5, provided that you also convey the -machine-readable Corresponding Source under the terms of this License, -in one of these ways: - - a) Convey the object code in, or embodied in, a physical product - (including a physical distribution medium), accompanied by the - Corresponding Source fixed on a durable physical medium - customarily used for software interchange. - - b) Convey the object code in, or embodied in, a physical product - (including a physical distribution medium), accompanied by a - written offer, valid for at least three years and valid for as - long as you offer spare parts or customer support for that product - model, to give anyone who possesses the object code either (1) a - copy of the Corresponding Source for all the software in the - product that is covered by this License, on a durable physical - medium customarily used for software interchange, for a price no - more than your reasonable cost of physically performing this - conveying of source, or (2) access to copy the - Corresponding Source from a network server at no charge. - - c) Convey individual copies of the object code with a copy of the - written offer to provide the Corresponding Source. This - alternative is allowed only occasionally and noncommercially, and - only if you received the object code with such an offer, in accord - with subsection 6b. - - d) Convey the object code by offering access from a designated - place (gratis or for a charge), and offer equivalent access to the - Corresponding Source in the same way through the same place at no - further charge. You need not require recipients to copy the - Corresponding Source along with the object code. If the place to - copy the object code is a network server, the Corresponding Source - may be on a different server (operated by you or a third party) - that supports equivalent copying facilities, provided you maintain - clear directions next to the object code saying where to find the - Corresponding Source. Regardless of what server hosts the - Corresponding Source, you remain obligated to ensure that it is - available for as long as needed to satisfy these requirements. - - e) Convey the object code using peer-to-peer transmission, provided - you inform other peers where the object code and Corresponding - Source of the work are being offered to the general public at no - charge under subsection 6d. - - A separable portion of the object code, whose source code is excluded -from the Corresponding Source as a System Library, need not be -included in conveying the object code work. - - A "User Product" is either (1) a "consumer product", which means any -tangible personal property which is normally used for personal, family, -or household purposes, or (2) anything designed or sold for incorporation -into a dwelling. In determining whether a product is a consumer product, -doubtful cases shall be resolved in favor of coverage. For a particular -product received by a particular user, "normally used" refers to a -typical or common use of that class of product, regardless of the status -of the particular user or of the way in which the particular user -actually uses, or expects or is expected to use, the product. A product -is a consumer product regardless of whether the product has substantial -commercial, industrial or non-consumer uses, unless such uses represent -the only significant mode of use of the product. - - "Installation Information" for a User Product means any methods, -procedures, authorization keys, or other information required to install -and execute modified versions of a covered work in that User Product from -a modified version of its Corresponding Source. The information must -suffice to ensure that the continued functioning of the modified object -code is in no case prevented or interfered with solely because -modification has been made. - - If you convey an object code work under this section in, or with, or -specifically for use in, a User Product, and the conveying occurs as -part of a transaction in which the right of possession and use of the -User Product is transferred to the recipient in perpetuity or for a -fixed term (regardless of how the transaction is characterized), the -Corresponding Source conveyed under this section must be accompanied -by the Installation Information. But this requirement does not apply -if neither you nor any third party retains the ability to install -modified object code on the User Product (for example, the work has -been installed in ROM). - - The requirement to provide Installation Information does not include a -requirement to continue to provide support service, warranty, or updates -for a work that has been modified or installed by the recipient, or for -the User Product in which it has been modified or installed. Access to a -network may be denied when the modification itself materially and -adversely affects the operation of the network or violates the rules and -protocols for communication across the network. - - Corresponding Source conveyed, and Installation Information provided, -in accord with this section must be in a format that is publicly -documented (and with an implementation available to the public in -source code form), and must require no special password or key for -unpacking, reading or copying. - - 7. Additional Terms. - - "Additional permissions" are terms that supplement the terms of this -License by making exceptions from one or more of its conditions. -Additional permissions that are applicable to the entire Program shall -be treated as though they were included in this License, to the extent -that they are valid under applicable law. If additional permissions -apply only to part of the Program, that part may be used separately -under those permissions, but the entire Program remains governed by -this License without regard to the additional permissions. - - When you convey a copy of a covered work, you may at your option -remove any additional permissions from that copy, or from any part of -it. (Additional permissions may be written to require their own -removal in certain cases when you modify the work.) You may place -additional permissions on material, added by you to a covered work, -for which you have or can give appropriate copyright permission. - - Notwithstanding any other provision of this License, for material you -add to a covered work, you may (if authorized by the copyright holders of -that material) supplement the terms of this License with terms: - - a) Disclaiming warranty or limiting liability differently from the - terms of sections 15 and 16 of this License; or - - b) Requiring preservation of specified reasonable legal notices or - author attributions in that material or in the Appropriate Legal - Notices displayed by works containing it; or - - c) Prohibiting misrepresentation of the origin of that material, or - requiring that modified versions of such material be marked in - reasonable ways as different from the original version; or - - d) Limiting the use for publicity purposes of names of licensors or - authors of the material; or - - e) Declining to grant rights under trademark law for use of some - trade names, trademarks, or service marks; or - - f) Requiring indemnification of licensors and authors of that - material by anyone who conveys the material (or modified versions of - it) with contractual assumptions of liability to the recipient, for - any liability that these contractual assumptions directly impose on - those licensors and authors. - - All other non-permissive additional terms are considered "further -restrictions" within the meaning of section 10. If the Program as you -received it, or any part of it, contains a notice stating that it is -governed by this License along with a term that is a further -restriction, you may remove that term. If a license document contains -a further restriction but permits relicensing or conveying under this -License, you may add to a covered work material governed by the terms -of that license document, provided that the further restriction does -not survive such relicensing or conveying. - - If you add terms to a covered work in accord with this section, you -must place, in the relevant source files, a statement of the -additional terms that apply to those files, or a notice indicating -where to find the applicable terms. - - Additional terms, permissive or non-permissive, may be stated in the -form of a separately written license, or stated as exceptions; -the above requirements apply either way. - - 8. Termination. - - You may not propagate or modify a covered work except as expressly -provided under this License. Any attempt otherwise to propagate or -modify it is void, and will automatically terminate your rights under -this License (including any patent licenses granted under the third -paragraph of section 11). - - However, if you cease all violation of this License, then your -license from a particular copyright holder is reinstated (a) -provisionally, unless and until the copyright holder explicitly and -finally terminates your license, and (b) permanently, if the copyright -holder fails to notify you of the violation by some reasonable means -prior to 60 days after the cessation. - - Moreover, your license from a particular copyright holder is -reinstated permanently if the copyright holder notifies you of the -violation by some reasonable means, this is the first time you have -received notice of violation of this License (for any work) from that -copyright holder, and you cure the violation prior to 30 days after -your receipt of the notice. - - Termination of your rights under this section does not terminate the -licenses of parties who have received copies or rights from you under -this License. If your rights have been terminated and not permanently -reinstated, you do not qualify to receive new licenses for the same -material under section 10. - - 9. Acceptance Not Required for Having Copies. - - You are not required to accept this License in order to receive or -run a copy of the Program. Ancillary propagation of a covered work -occurring solely as a consequence of using peer-to-peer transmission -to receive a copy likewise does not require acceptance. However, -nothing other than this License grants you permission to propagate or -modify any covered work. These actions infringe copyright if you do -not accept this License. Therefore, by modifying or propagating a -covered work, you indicate your acceptance of this License to do so. - - 10. Automatic Licensing of Downstream Recipients. - - Each time you convey a covered work, the recipient automatically -receives a license from the original licensors, to run, modify and -propagate that work, subject to this License. You are not responsible -for enforcing compliance by third parties with this License. - - An "entity transaction" is a transaction transferring control of an -organization, or substantially all assets of one, or subdividing an -organization, or merging organizations. If propagation of a covered -work results from an entity transaction, each party to that -transaction who receives a copy of the work also receives whatever -licenses to the work the party's predecessor in interest had or could -give under the previous paragraph, plus a right to possession of the -Corresponding Source of the work from the predecessor in interest, if -the predecessor has it or can get it with reasonable efforts. - - You may not impose any further restrictions on the exercise of the -rights granted or affirmed under this License. For example, you may -not impose a license fee, royalty, or other charge for exercise of -rights granted under this License, and you may not initiate litigation -(including a cross-claim or counterclaim in a lawsuit) alleging that -any patent claim is infringed by making, using, selling, offering for -sale, or importing the Program or any portion of it. - - 11. Patents. - - A "contributor" is a copyright holder who authorizes use under this -License of the Program or a work on which the Program is based. The -work thus licensed is called the contributor's "contributor version". - - A contributor's "essential patent claims" are all patent claims -owned or controlled by the contributor, whether already acquired or -hereafter acquired, that would be infringed by some manner, permitted -by this License, of making, using, or selling its contributor version, -but do not include claims that would be infringed only as a -consequence of further modification of the contributor version. For -purposes of this definition, "control" includes the right to grant -patent sublicenses in a manner consistent with the requirements of -this License. - - Each contributor grants you a non-exclusive, worldwide, royalty-free -patent license under the contributor's essential patent claims, to -make, use, sell, offer for sale, import and otherwise run, modify and -propagate the contents of its contributor version. - - In the following three paragraphs, a "patent license" is any express -agreement or commitment, however denominated, not to enforce a patent -(such as an express permission to practice a patent or covenant not to -sue for patent infringement). To "grant" such a patent license to a -party means to make such an agreement or commitment not to enforce a -patent against the party. - - If you convey a covered work, knowingly relying on a patent license, -and the Corresponding Source of the work is not available for anyone -to copy, free of charge and under the terms of this License, through a -publicly available network server or other readily accessible means, -then you must either (1) cause the Corresponding Source to be so -available, or (2) arrange to deprive yourself of the benefit of the -patent license for this particular work, or (3) arrange, in a manner -consistent with the requirements of this License, to extend the patent -license to downstream recipients. "Knowingly relying" means you have -actual knowledge that, but for the patent license, your conveying the -covered work in a country, or your recipient's use of the covered work -in a country, would infringe one or more identifiable patents in that -country that you have reason to believe are valid. - - If, pursuant to or in connection with a single transaction or -arrangement, you convey, or propagate by procuring conveyance of, a -covered work, and grant a patent license to some of the parties -receiving the covered work authorizing them to use, propagate, modify -or convey a specific copy of the covered work, then the patent license -you grant is automatically extended to all recipients of the covered -work and works based on it. - - A patent license is "discriminatory" if it does not include within -the scope of its coverage, prohibits the exercise of, or is -conditioned on the non-exercise of one or more of the rights that are -specifically granted under this License. You may not convey a covered -work if you are a party to an arrangement with a third party that is -in the business of distributing software, under which you make payment -to the third party based on the extent of your activity of conveying -the work, and under which the third party grants, to any of the -parties who would receive the covered work from you, a discriminatory -patent license (a) in connection with copies of the covered work -conveyed by you (or copies made from those copies), or (b) primarily -for and in connection with specific products or compilations that -contain the covered work, unless you entered into that arrangement, -or that patent license was granted, prior to 28 March 2007. - - Nothing in this License shall be construed as excluding or limiting -any implied license or other defenses to infringement that may -otherwise be available to you under applicable patent law. - - 12. No Surrender of Others' Freedom. - - If conditions are imposed on you (whether by court order, agreement or -otherwise) that contradict the conditions of this License, they do not -excuse you from the conditions of this License. If you cannot convey a -covered work so as to satisfy simultaneously your obligations under this -License and any other pertinent obligations, then as a consequence you may -not convey it at all. For example, if you agree to terms that obligate you -to collect a royalty for further conveying from those to whom you convey -the Program, the only way you could satisfy both those terms and this -License would be to refrain entirely from conveying the Program. - - 13. Use with the GNU Affero General Public License. - - Notwithstanding any other provision of this License, you have -permission to link or combine any covered work with a work licensed -under version 3 of the GNU Affero General Public License into a single -combined work, and to convey the resulting work. The terms of this -License will continue to apply to the part which is the covered work, -but the special requirements of the GNU Affero General Public License, -section 13, concerning interaction through a network will apply to the -combination as such. - - 14. Revised Versions of this License. - - The Free Software Foundation may publish revised and/or new versions of -the GNU General Public License from time to time. Such new versions will -be similar in spirit to the present version, but may differ in detail to -address new problems or concerns. - - Each version is given a distinguishing version number. If the -Program specifies that a certain numbered version of the GNU General -Public License "or any later version" applies to it, you have the -option of following the terms and conditions either of that numbered -version or of any later version published by the Free Software -Foundation. If the Program does not specify a version number of the -GNU General Public License, you may choose any version ever published -by the Free Software Foundation. - - If the Program specifies that a proxy can decide which future -versions of the GNU General Public License can be used, that proxy's -public statement of acceptance of a version permanently authorizes you -to choose that version for the Program. - - Later license versions may give you additional or different -permissions. However, no additional obligations are imposed on any -author or copyright holder as a result of your choosing to follow a -later version. - - 15. Disclaimer of Warranty. - - THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY -APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT -HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY -OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, -THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR -PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM -IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF -ALL NECESSARY SERVICING, REPAIR OR CORRECTION. - - 16. Limitation of Liability. - - IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING -WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS -THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY -GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE -USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF -DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD -PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS), -EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF -SUCH DAMAGES. - - 17. Interpretation of Sections 15 and 16. - - If the disclaimer of warranty and limitation of liability provided -above cannot be given local legal effect according to their terms, -reviewing courts shall apply local law that most closely approximates -an absolute waiver of all civil liability in connection with the -Program, unless a warranty or assumption of liability accompanies a -copy of the Program in return for a fee. - - END OF TERMS AND CONDITIONS - - How to Apply These Terms to Your New Programs - - If you develop a new program, and you want it to be of the greatest -possible use to the public, the best way to achieve this is to make it -free software which everyone can redistribute and change under these terms. - - To do so, attach the following notices to the program. It is safest -to attach them to the start of each source file to most effectively -state the exclusion of warranty; and each file should have at least -the "copyright" line and a pointer to where the full notice is found. - - <one line to give the program's name and a brief idea of what it does.> - Copyright (C) <year> <name of author> - - This program is free software: you can redistribute it and/or modify - it under the terms of the GNU General Public License as published by - the Free Software Foundation, either version 3 of the License, or - (at your option) any later version. - - This program is distributed in the hope that it will be useful, - but WITHOUT ANY WARRANTY; without even the implied warranty of - MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the - GNU General Public License for more details. - - You should have received a copy of the GNU General Public License - along with this program. If not, see <http://www.gnu.org/licenses/>. - -Also add information on how to contact you by electronic and paper mail. - - If the program does terminal interaction, make it output a short -notice like this when it starts in an interactive mode: - - <program> Copyright (C) <year> <name of author> - This program comes with ABSOLUTELY NO WARRANTY; for details type `show w'. - This is free software, and you are welcome to redistribute it - under certain conditions; type `show c' for details. - -The hypothetical commands `show w' and `show c' should show the appropriate -parts of the General Public License. Of course, your program's commands -might be different; for a GUI interface, you would use an "about box". - - You should also get your employer (if you work as a programmer) or school, -if any, to sign a "copyright disclaimer" for the program, if necessary. -For more information on this, and how to apply and follow the GNU GPL, see -<http://www.gnu.org/licenses/>. - - The GNU General Public License does not permit incorporating your program -into proprietary programs. If your program is a subroutine library, you -may consider it more useful to permit linking proprietary applications with -the library. If this is what you want to do, use the GNU Lesser General -Public License instead of this License. But first, please read -<http://www.gnu.org/philosophy/why-not-lgpl.html>. diff --git a/openair1/SIMULATION/LOLA_DaF_D42/Makefile b/openair1/SIMULATION/LOLA_DaF_D42/Makefile deleted file mode 100644 index bcde5c4bb675a88e8b1593b63ccf23fd6c13034a..0000000000000000000000000000000000000000 --- a/openair1/SIMULATION/LOLA_DaF_D42/Makefile +++ /dev/null @@ -1,103 +0,0 @@ -include $(OPENAIR_HOME)/common/utils/Makefile.inc - -TOP_DIR = $(OPENAIR1_DIR) -OPENAIR1_TOP = $(OPENAIR1_DIR) -OPENAIR2_TOP = $(OPENAIR2_DIR) -OPENAIR3 = $(OPENAIR3_DIR) - -CFLAGS += -DPHYSIM -DNODE_RG -DUSER_MODE -DPC_TARGET -DPC_DSP -DNB_ANTENNAS_RX=2 -DNB_ANTENNAS_TXRX=2 -DNB_ANTENNAS_TX=2 -DPHY_CONTEXT=1 # -Wno-packed-bitfield-compat - -LFLAGS = -lm -lblas -lrt - -CFLAGS += -m32 -DOPENAIR_LTE -DOFDMA_ULSCH #-DIFFT_FPGA -DIFFT_FPGA_UE -#CFLAGS += -DTBS_FIX -CFLAGS += -DCELLULAR - -ASN1_MSG_INC = $(OPENAIR2_DIR)/RRC/LITE/MESSAGES - -ifdef EMOS -CFLAGS += -DEMOS -endif - -ifdef DEBUG_PHY -CFLAGS += -DDEBUG_PHY -endif - -ifdef MeNBMUE -CFLAGS += -DMeNBMUE -endif - -ifdef MU_RECEIVER -CFLAGS += -DMU_RECEIVER -endif - -ifdef ZBF_ENABLED -CFLAGS += -DNULL_SHAPE_BF_ENABLED -endif - -ifdef RANDOM_BF -CFLAGS += -DRANDOM_BF -endif - -ifdef PBS_SIM -CFLAGS += -DPBS_SIM -endif - -ifdef XFORMS -CFLAGS += -DXFORMS -LFLAGS += -lforms -endif - -ifdef PERFECT_CE -CFLAGS += -DPERFECT_CE -endif - -CFLAGS += -DNO_RRM -DOPENAIR2 #-DPHY_ABSTRACTION - -CFLAGS += -I/usr/include/X11 -I/usr/X11R6/include - - -all: colabsim - -include $(TOP_DIR)/PHY/Makefile.inc -#SCHED_OBJS = $(TOP_DIR)/SCHED/phy_procedures_lte_common.o $(TOP_DIR)/SCHED/phy_procedures_lte_eNb.o $(TOP_DIR)/SCHED/phy_procedures_lte_ue.o -include $(TOP_DIR)/SCHED/Makefile.inc -include $(TOP_DIR)/SIMULATION/Makefile.inc -include $(OPENAIR2_DIR)/LAYER2/Makefile.inc -include $(OPENAIR2_DIR)/UTIL/Makefile.inc -include $(OPENAIR2_DIR)/RRC/LITE/MESSAGES/Makefile.inc - -CFLAGS += $(L2_incl) -I$(ASN1_MSG_INC) -I$(TOP_DIR) -I$(OPENAIR3) ${UTIL_incl} -#EXTRA_CFLAGS = - -#STATS_OBJS += $(TOP_DIR)/ARCH/CBMIMO1/DEVICE_DRIVER/cbmimo1_proc.o - -#LAYER2_OBJ += $(OPENAIR2_DIR)/LAYER2/MAC/rar_tools.o -LAYER2_OBJ = $(OPENAIR2_DIR)/LAYER2/MAC/lte_transport_init.o - -OBJ = $(PHY_OBJS) $(SIMULATION_OBJS) $(TOOLS_OBJS) $(SCHED_OBJS) $(LAYER2_OBJ) $(LOG_OBJS) #$(ASN1_MSG_OBJS) - -ifdef XFORMS -OBJ += ../../USERSPACE_TOOLS/SCOPE/lte_scope.o -endif - -$(OBJ) : %.o : %.c - @echo - @echo Compiling $< ... - @$(CC) -c $(CFLAGS) -o $@ $< - -colabsim : $(OBJ) colabsim.c - @echo "Compiling colabsim.c ..." - @$(CC) colabsim.c -o colabsim $(CFLAGS) $(OBJ) $(LFLAGS) #-static -L/usr/lib/libblas - -clean : - rm -f $(OBJ) - rm -f *.o - -cleanall : clean - rm -f colabsim - rm -f *.exe* - -showcflags : - @echo $(CFLAGS) - diff --git a/openair1/SIMULATION/LOLA_DaF_D42/TODO b/openair1/SIMULATION/LOLA_DaF_D42/TODO deleted file mode 100644 index b6ad03deb7c87c492d872a13c00426302101c0df..0000000000000000000000000000000000000000 --- a/openair1/SIMULATION/LOLA_DaF_D42/TODO +++ /dev/null @@ -1,10 +0,0 @@ -* TDD mode 1 -* [du]lsch_ue_col for collaborative links -* Define TBS_FIX (pilots for several CH) -* Document output result file format -* Add end-to-end HARQ strategy -* AMC? -* Describe placement of data in LTE frame -* Automatic RB allocation -* MR bler statistics - diff --git a/openair1/SIMULATION/LOLA_DaF_D42/colabsim.c b/openair1/SIMULATION/LOLA_DaF_D42/colabsim.c deleted file mode 100644 index 1ceb253e7c3d102c404393363da8150795819c89..0000000000000000000000000000000000000000 --- a/openair1/SIMULATION/LOLA_DaF_D42/colabsim.c +++ /dev/null @@ -1,2359 +0,0 @@ -/******************************************************************************* - OpenAirInterface - Copyright(c) 1999 - 2014 Eurecom - - OpenAirInterface is free software: you can redistribute it and/or modify - it under the terms of the GNU General Public License as published by - the Free Software Foundation, either version 3 of the License, or - (at your option) any later version. - - - OpenAirInterface is distributed in the hope that it will be useful, - but WITHOUT ANY WARRANTY; without even the implied warranty of - MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the - GNU General Public License for more details. - - You should have received a copy of the GNU General Public License - along with OpenAirInterface.The full GNU General Public License is - included in this distribution in the file called "COPYING". If not, - see <http://www.gnu.org/licenses/>. - - Contact Information - OpenAirInterface Admin: openair_admin@eurecom.fr - OpenAirInterface Tech : openair_tech@eurecom.fr - OpenAirInterface Dev : openair4g-devel@eurecom.fr - - Address : Eurecom, Campus SophiaTech, 450 Route des Chappes, CS 50193 - 06904 Biot Sophia Antipolis cedex, FRANCE - - *******************************************************************************/ -//************************************************************** -// Compile with: -// $ make colabsim -//************************************************************** - -#include <string.h> -#include <math.h> -#include <execinfo.h> -#include <signal.h> -#include <unistd.h> -#include <getopt.h> - -#include "SIMULATION/TOOLS/defs.h" -#include "PHY/types.h" -#include "PHY/defs.h" -#include "PHY/vars.h" -#include "MAC_INTERFACE/vars.h" - -#include "ARCH/CBMIMO1/DEVICE_DRIVER/vars.h" -#include "SCHED/defs.h" -#include "SCHED/vars.h" -#include "LAYER2/MAC/vars.h" - -#include "OCG_vars.h" - -#ifndef RA_RNTI -#define RA_RNTI 0xfffe -#endif - -typedef unsigned char bool; -const bool false = 0; -const bool true = 1; - -#define BW 7.68 -#define N_PRB 25 -#define RBG_SIZE 2 -#define NID_CELL 0 -#define MAX_RELAYS 8 -#define MAX_HARQ_ROUNDS 4 -#define MAX_FRAMES 2*MAX_HARQ_ROUNDS+1 - -const uint8_t cp_type = 0; // Normal cyclic prefix -const uint8_t n_txantenna_ch = 1; // Number of CH transmit antennas -const uint8_t n_rxantenna_ch = 1; // Number of CH receive antennas -const uint8_t n_txantenna_mr = 1; // Number of MR transmit antennas -const uint8_t n_rxantenna_mr = 1; // Number of MR receive antennas -const uint8_t oversampling = 1; -const uint8_t subframe_hop1 = 1; // Subframe for CH1 PDCCH+PDSCH transmission -const uint8_t subframe_hop2 = 7; // Subframe for MR PDU to CH2 -const uint8_t n_pdcch_symbols = 3; // Number of PDCCH symbols in DL subframes - -typedef enum { - analysis_single, // Simulate one SNR point - analysis_snrsweep_a, // Sweep SNR of first relay from negative to positive - // for both hops - analysis_snrsweep_b, // Sweep SNR of first relay from negative to positive - // for hop 1 and from postive to negative for hop 2 - analysis_snrsweep_c -} analysis_t; - -typedef enum { - strategy_wait_all, // Wait for all relays to decode before starting hop 2 - strategy_wait_one // Start hop 2 when one relay has decoded -} strategy_t; - -// Structure for command line parsed arguments -typedef struct { - bool debug_output; // Output MATLAB signal files - int verbose; // Verbosity level - analysis_t analysis; // Analysis mode - int range; // Sweep range - double step; // Sweep step size - strategy_t strategy; // HARQ strategy - int n_relays; // Number of relays - int n_pdu; // Number of MAC PDUs to simulate - int n_harq; // Maximum number of HARQ rounds - int mcs_hop1; // MCS for hop 1 - int mcs_hop2; // MCS for hop 2 - int n_prb_hop1; // Number of PRB utilized in hop 1 - int n_prb_hop2; // Number of PRB utilized in hop 2 - bool autorb; // Reduce number of PRB to balance TBS - SCM_t channel_model; // Channel model - double channel_correlation; // Channel reutilization factor - double snr_hop1[MAX_RELAYS]; // SNR used in hop 1 for all links - double snr_hop2[MAX_RELAYS]; // SNR used in hop 2 for all links - const char* results_fn; // File to save simulation results to -} args_t; - -// Structure containing link simulation results for one test -// Note: mcs_hop*, tbs_hop*, n_prb_hop* are matrices containing values for each -// transmission attempt in the simulation. The first index is the MAC PDU -// index and the second is the HARQ round index. Currently no AMC is -// implemented, and all these values are the same for each MAC PDU. -// Note: The meaning of n_harq_success_hop1 is dependent on the HARQ strategy. -// In HARQ strategy 1, both relays must be decode. -// Other HARQ strategies are not implemented yet. -typedef struct { - int n_relays; // number of relays - int n_pdu; // number of transmitted MAC PDUs - int n_harq; // number of HARQ rounds - SCM_t channel_model; // used channel model - double* snr_hop1; // SNRs for each link in hop 1 - double* snr_hop2; // SNRs for each link in hop 2 - int** mcs_hop1; // MCS used in hop 1 - int** mcs_hop2; // MCS used in hop 2 - int** tbs_hop1; // transport block size for hop 1 - int** tbs_hop2; // transport block size for hop 2 - int** n_prb_hop1; // number of used PRBs in hop 1 - int** n_prb_hop2; // number of used PRBs in hop 2 - int n_frames_hop1; // number of transmitted LTE frames in hop 1 - int n_frames_hop2; // number of transmitted LTE frames in hop 2 - int n_bits_hop1; // number of correctly received information bits over hop 1 - int n_bits_hop2; // number of correctly received information bits over hop 2 - double ber_hop1[MAX_RELAYS]; // raw BER in hop 1 - double ber_hop2; // raw BER in hop 2 - int n_pdu_success_hop1; // number of correctly received MAC PDUs in hop 1 - int n_pdu_success_hop2; // number of correctly received MAC PDUs in hop 2 - int n_harq_tries_hop1[MAX_HARQ_ROUNDS]; // number of transmitted MAC PDUs in each HARQ round in hop 1 - int n_harq_success_hop1[MAX_HARQ_ROUNDS]; // number of successfully decoded MAC PDUs in each HARQ round in hop 1 - int n_harq_tries_hop2[MAX_HARQ_ROUNDS]; // number of transmitted MAC PDUs in each HARQ round in hop 2 - int n_harq_success_hop2[MAX_HARQ_ROUNDS]; // number of successfully decoded MAC PDUs in each HARQ round in hop 2 - int n_transmissions[MAX_HARQ_ROUNDS][MAX_HARQ_ROUNDS]; // PDF of number of transmissions in the two hops for - // MAC PDUs correctly received at CH2 - int* relay_activity; // PDF of relay activity, [1]: MR1 active, [2]: MR2 active, [3]: MR1+MR2 active -} results_t; - -// Relay role in distributed Alamouti coding -typedef enum { - RELAY_ROLE_STANDARD, // Relay sends [ x1 x2 ] - RELAY_ROLE_ALTERNATE // Relay sends [-x2* x1*] -} relay_role_t; - -typedef struct { - double* s_re[1]; - double* s_im[1]; - double* r_re[1]; - double* r_im[1]; - double* r_re_t[1]; - double* r_im_t[1]; -} channel_vars_t; - -typedef struct { - channel_vars_t* cvars; - channel_desc_t* channel; -} sh_channel_t; - -// Simulation context -typedef struct { - LTE_DL_FRAME_PARMS* frame_parms; - PHY_VARS_eNB* phy_vars_ch_src; - PHY_VARS_eNB* phy_vars_ch_dest; - PHY_VARS_UE** phy_vars_mr; - sh_channel_t** channels_hop1; - sh_channel_t** channels_hop2; - int32_t* rxdata[1]; - double* snr_hop1; - double* snr_hop2; - int mcs_hop1; - int mcs_hop2; - uint32_t tbs_hop1; - uint32_t tbs_hop2; - uint32_t tbs_col; - uint16_t rnti_hop1; - uint16_t rnti_hop2; - int input_buffer_length; - uint8_t* input_buffer; - int mr_buffer_length; - uint8_t* mr_buffer[MAX_RELAYS]; - uint32_t n_coded_bits_hop1; - uint32_t n_coded_bits_hop2; - int n_ber_frames_hop1[MAX_RELAYS]; - int n_ber_frames_hop2; - uint8_t n_avail_pdcch_symbols; - uint8_t subframe_hop1; - uint8_t subframe_hop2; - uint8_t harq_pid_hop2; -} context_t; - -void transmit_one_pdu(args_t* args, context_t* context, int pdu, results_t* results); -int parse_args(int argc, char** argv, args_t* args); -int parse_channel_model(const char* str, SCM_t* model); -bool parse_snr(const char* str, double* snr, int n); -void print_usage(const char* prog); -void print_channel_usage(); -void signal_handler(int sig); -void setup_single(double** snrs, int* n_tests, double* snr_hop1, double* snr_hop2, int n_relays); -void setup_snrsweep_a(double** snrs, int* n_tests, double* snr_hop1, double* snr_hop2, int n_relays, double step, int start, int end); -void setup_snrsweep_b(double** snrs, int* n_tests, double* snr_hop1, double* snr_hop2, int n_relays, double step, int start, int end); -void setup_snrsweep_c(double** snrs, int* n_tests, double* snr_hop1, double* snr_hop2, int n_relays, double step, int start, int end); -void setup_frame_params(LTE_DL_FRAME_PARMS* frame_parms, unsigned char transmission_mode); -void setup_phy_vars(LTE_DL_FRAME_PARMS* frame_parms, PHY_VARS_eNB* phy_vars_ch_src, - PHY_VARS_UE** phy_vars_mr, PHY_VARS_eNB* phy_vars_ch_dest, int n_relays); -uint16_t rballoc_type0(int n_rb, int rbg_size); -void setup_broadcast_dci(DCI_ALLOC_t* dci, uint16_t rnti, int harq_round, int mcs, int n_rb); -void setup_distributed_dci(DCI_ALLOC_t* dci, uint16_t rnti, int harq_round, int mcs, int n_rb); -void alloc_broadcast_transport_channel(PHY_VARS_eNB* phy_vars_ch, PHY_VARS_UE** phy_vars_mr, int n_relays, uint16_t rnti); -void free_broadcast_transport_channel(PHY_VARS_eNB* phy_vars_ch, PHY_VARS_UE** phy_vars_mr, int n_relays); -void alloc_distributed_transport_channel(PHY_VARS_eNB* phy_vars_ch, PHY_VARS_UE** phy_vars_mr, int n_relays, uint16_t rnti); -void free_distributed_transport_channel(PHY_VARS_eNB* phy_vars_ch, PHY_VARS_UE** phy_vars_mr, int n_relays); -void ofdm_modulation(mod_sym_t** tx_f, int32_t** tx_t, LTE_DL_FRAME_PARMS* frame_parms, uint8_t subframe, uint8_t nsymb); -channel_vars_t alloc_channel_vars(LTE_DL_FRAME_PARMS* frame_parms); -void free_channel_vars(channel_vars_t v); -sh_channel_t* alloc_sh_channel(channel_vars_t* cvars, SCM_t channel_model, int n_txantennas, int n_rxantennas, double channel_correlation); -void free_sh_channel(sh_channel_t* c); -void transmit_subframe(sh_channel_t* channel, int32_t** src, LTE_DL_FRAME_PARMS* frame_parms, uint8_t subframe, uint8_t nsymb, double ampl, bool accumulate); -void deliver_subframe(sh_channel_t* channel, int32_t** dst, LTE_DL_FRAME_PARMS* frame_parms, uint8_t subframe, uint8_t nsymb, double stddev); -void ofdm_fep(PHY_VARS_UE* phy_vars_mr, uint8_t subframe); -int rx_dlsch_symbol(PHY_VARS_UE* phy_vars, uint8_t subframe, uint8_t symbol, uint8_t first_symbol); -uint32_t get_ulsch_G(LTE_UE_ULSCH_t *ulsch, uint8_t harq_pid); -double compute_ber_soft(uint8_t* ref, int16_t* rec, int n); -void print_dlsch_eNB_stats(LTE_eNB_DLSCH_t* d); -void print_dlsch_ue_stats(LTE_UE_DLSCH_t* d); -void print_ulsch_ue_stats(LTE_UE_ULSCH_t* d); -void print_ulsch_eNB_stats(LTE_eNB_ULSCH_t* d); -int block_valid(uint8_t* ref, uint8_t* rec, int n); -void init_results(results_t* r, args_t* a); -void clear_results(results_t* r); -void free_results(results_t* r); -void print_results(results_t* r); -void write_results_header(FILE* f, results_t* r, int n_tests); -void write_results_data(FILE* f, results_t* r); -double calc_delay(int* n_frames, int n_harq); - -// Function declarations missing in LTE_TRANSPORT/proto.h: -uint8_t pdcch_alloc2ul_subframe(LTE_DL_FRAME_PARMS* frame_parms, uint8_t n); -uint8_t ul_subframe2pdcch_alloc_subframe(LTE_DL_FRAME_PARMS* frame_parms, uint8_t n); - -int main(int argc, char **argv) -{ - args_t args; - results_t results; - context_t context; - - DCI_ALLOC_t dci_hop1; - DCI_ALLOC_t dci_hop2; - - channel_vars_t channel_vars; - - double* snrs; - int n_tests; - - int test; // Current test - int pdu; // Current MAC PDU - int k; - - bool store_results = false; - FILE* results_file = 0; - - // Parse arguments - k = parse_args(argc, argv, &args); - - if(k == 1) { - print_usage(argv[0]); - exit(1); - } else if(k == 2) { - print_channel_usage(); - exit(1); - } - - // Check argument bounds - if(args.n_relays > MAX_RELAYS) { - printf("Too many relays, increase MAX_RELAYS\n"); - exit(1); - } - - if(args.n_harq > MAX_HARQ_ROUNDS) { - printf("Too many HARQ rounds, increase MAX_HARQ_ROUNDS\n"); - exit(1); - } - - // General setup - signal(SIGSEGV, signal_handler); - randominit(0); - set_taus_seed(0); - - // Allocate memory for frame parameters and node structures - context.frame_parms = malloc(sizeof(LTE_DL_FRAME_PARMS)); - memset(context.frame_parms, 0, sizeof(LTE_DL_FRAME_PARMS)); - context.phy_vars_ch_src = malloc(sizeof(PHY_VARS_eNB)); - context.phy_vars_ch_dest = malloc(sizeof(PHY_VARS_eNB)); - context.phy_vars_mr = malloc(args.n_relays*sizeof(PHY_VARS_UE*)); - - for(k = 0; k < args.n_relays; k++) { - context.phy_vars_mr[k] = malloc(sizeof(PHY_VARS_UE)); - memset(context.phy_vars_mr[k], 0, sizeof(PHY_VARS_UE)); - } - - memset(context.phy_vars_ch_src, 0, sizeof(PHY_VARS_eNB)); - memset(context.phy_vars_ch_dest, 0, sizeof(PHY_VARS_eNB)); - - // Initialize log - logInit(); - - // Initialize result data - init_results(&results, &args); - - // Allocate channel structures - context.channels_hop1 = malloc(args.n_relays*sizeof(sh_channel_t*)); - context.channels_hop2 = malloc(args.n_relays*sizeof(sh_channel_t*)); - memset(context.channels_hop1, 0, args.n_relays*sizeof(sh_channel_t*)); - memset(context.channels_hop2, 0, args.n_relays*sizeof(sh_channel_t*)); - - // Setup analysis structures - switch(args.analysis) { - case analysis_single: - setup_single(&snrs, &n_tests, args.snr_hop1, args.snr_hop2, args.n_relays); - break; - - case analysis_snrsweep_a: - setup_snrsweep_a(&snrs, &n_tests, args.snr_hop1, args.snr_hop2, args.n_relays, args.step, -args.range, args.range); - break; - - case analysis_snrsweep_b: - setup_snrsweep_b(&snrs, &n_tests, args.snr_hop1, args.snr_hop2, args.n_relays, args.step, -args.range, args.range); - break; - - case analysis_snrsweep_c: - setup_snrsweep_c(&snrs, &n_tests, args.snr_hop1, args.snr_hop2, args.n_relays, args.step, -args.range, args.range); - break; - } - - // Open results file (if requested) - if(args.results_fn) { - store_results = true; - results_file = fopen(args.results_fn, "w"); - - if(!results_file) { - perror("fopen"); - exit(1); - } - } - - if(store_results) { - write_results_header(results_file, &results, n_tests); - } - - // Setup PHY structures - setup_frame_params(context.frame_parms, 1); - setup_phy_vars(context.frame_parms, context.phy_vars_ch_src, context.phy_vars_mr, context.phy_vars_ch_dest, args.n_relays); - - // Setup simulation context - context.rnti_hop1 = 0x1515; - context.rnti_hop2 = 0x1516; - context.mcs_hop1 = args.mcs_hop1; - context.mcs_hop2 = args.mcs_hop2; - context.n_avail_pdcch_symbols = n_pdcch_symbols; - context.subframe_hop1 = subframe_hop1; - context.subframe_hop2 = subframe_hop2; - - // Allocate temporary signal structures - context.rxdata[0] = malloc(10*context.frame_parms->samples_per_tti); - - // Allocate first hop transport channel - alloc_broadcast_transport_channel(context.phy_vars_ch_src, context.phy_vars_mr, args.n_relays, context.rnti_hop1); - - // Allocate second hop transport channel - alloc_distributed_transport_channel(context.phy_vars_ch_dest, context.phy_vars_mr, args.n_relays, context.rnti_hop2); - - // Setup channel structures - channel_vars = alloc_channel_vars(context.frame_parms); - - for(k = 0; k < args.n_relays; k++) { - context.channels_hop1[k] = alloc_sh_channel(&channel_vars, args.channel_model, n_txantenna_ch, n_rxantenna_mr, args.channel_correlation); - context.channels_hop2[k] = alloc_sh_channel(&channel_vars, args.channel_model, n_txantenna_mr, n_rxantenna_ch, args.channel_correlation); - } - - // Create broadcast DCI and generate transport channel parameters, - // in order to determine hop 1 transfer block size and number of coded bits - setup_broadcast_dci(&dci_hop1, context.rnti_hop1, 0, args.mcs_hop1, args.n_prb_hop1); - generate_eNB_dlsch_params_from_dci(subframe_hop1, dci_hop1.dci_pdu, - context.rnti_hop1, format1, context.phy_vars_ch_src->dlsch_eNB[0], context.frame_parms, - SI_RNTI, RA_RNTI, P_RNTI, - context.phy_vars_ch_src->eNB_UE_stats[0].DL_pmi_single); - context.tbs_hop1 = context.phy_vars_ch_src->dlsch_eNB[0][0]->harq_processes[0]->TBS; - context.n_coded_bits_hop1 = get_G(context.frame_parms, context.phy_vars_ch_src->dlsch_eNB[0][0]->nb_rb, - context.phy_vars_ch_src->dlsch_eNB[0][0]->rb_alloc, - get_Qm(context.phy_vars_ch_src->dlsch_eNB[0][0]->harq_processes[0]->mcs), - context.n_avail_pdcch_symbols, subframe_hop1); - - // Create distributed DCI and generate transport channel parameters, - // in order to determine hop 2 transfer block size and number of coded bits - context.harq_pid_hop2 = subframe2harq_pid(context.frame_parms, 0, subframe_hop2); - setup_distributed_dci(&dci_hop2, context.rnti_hop2, 0, args.mcs_hop2, args.n_prb_hop2); - generate_ue_ulsch_params_from_dci(dci_hop2.dci_pdu, context.rnti_hop2, - ul_subframe2pdcch_alloc_subframe(context.frame_parms, subframe_hop2), - format0, context.phy_vars_mr[0], SI_RNTI, RA_RNTI, P_RNTI, 0, 0); - context.tbs_hop2 = context.phy_vars_mr[0]->ulsch_ue[0]->harq_processes[context.harq_pid_hop2]->TBS; - context.n_coded_bits_hop2 = get_ulsch_G(context.phy_vars_mr[0]->ulsch_ue[0], context.harq_pid_hop2); - - if(args.verbose > 1) { - print_dlsch_eNB_stats(context.phy_vars_ch_src->dlsch_eNB[0][0]); - print_ulsch_ue_stats(context.phy_vars_mr[0]->ulsch_ue[0]); - dump_dci(context.frame_parms, &dci_hop1); - dump_dci(context.frame_parms, &dci_hop2); - } - - printf("Hop 1: TBS=%d, G=%d, rate=%f. Hop 2: TBS=%d, G=%d, rate=%f\n", - context.tbs_hop1, context.n_coded_bits_hop1, (float)context.tbs_hop1/(float)context.n_coded_bits_hop1, - context.tbs_hop2, context.n_coded_bits_hop2, (float)context.tbs_hop2/(float)context.n_coded_bits_hop2); - - context.tbs_col = context.tbs_hop1 < context.tbs_hop2 ? context.tbs_hop1 : context.tbs_hop2; - - // Allocate input buffer - context.input_buffer_length = context.tbs_hop1/8; - context.input_buffer = malloc(context.input_buffer_length+4); - memset(context.input_buffer, 0, context.input_buffer_length+4); - - if(args.verbose > 0) - printf("Input buffer: %d bytes\n", context.input_buffer_length); - - // Allocate MR data buffers - context.mr_buffer_length = context.tbs_hop2/8; - - for(k = 0; k < args.n_relays; k++) { - context.mr_buffer[k] = malloc(context.mr_buffer_length+4); - memset(context.mr_buffer[k], 0, context.mr_buffer_length+4); - } - - for(test = 0; test < n_tests; test++) { - // Set SNRs - context.snr_hop1 = &snrs[2*args.n_relays*test]; - context.snr_hop2 = &snrs[2*args.n_relays*test + args.n_relays]; - - // Clear results - clear_results(&results); - - for(k = 0; k < args.n_relays; k++) { - context.n_ber_frames_hop1[k] = 0; - } - - context.n_ber_frames_hop2 = 0; - results.snr_hop1 = context.snr_hop1; - results.snr_hop2 = context.snr_hop2; - - // Print test info. - printf("\n*** Test %d/%d ***\n", test+1, n_tests); - - for(pdu = 0; pdu < args.n_pdu; pdu++) { - transmit_one_pdu(&args, &context, pdu, &results); - } - - // Compute average BER for the links - for(k = 0; k < args.n_relays; k++) - if(context.n_ber_frames_hop1[k] > 0) - results.ber_hop1[k] /= (double)context.n_ber_frames_hop1[k]; - else - results.ber_hop1[k] = 0.0; - - if(context.n_ber_frames_hop2 > 0) - results.ber_hop2 /= (double)context.n_ber_frames_hop2; - else - results.ber_hop2 = 0.0; - - print_results(&results); - - if(store_results) - write_results_data(results_file, &results); - } - - if(store_results) - fclose(results_file); - - free_results(&results); - free(context.input_buffer); - free(context.rxdata[0]); - free_broadcast_transport_channel(context.phy_vars_ch_src, context.phy_vars_mr, args.n_relays); - free_distributed_transport_channel(context.phy_vars_ch_dest, context.phy_vars_mr, args.n_relays); - free(snrs); - - for(k = 0; k < args.n_relays; k++) { - free_sh_channel(context.channels_hop1[k]); - free_sh_channel(context.channels_hop2[k]); - } - - free_channel_vars(channel_vars); - free(context.channels_hop1); - free(context.channels_hop2); - free(context.phy_vars_ch_src); - free(context.phy_vars_ch_dest); - - for(k = 0; k < args.n_relays; k++) - free(context.phy_vars_mr[k]); - - free(context.phy_vars_mr); - free(context.frame_parms); - - return 0; -} - -void transmit_one_pdu(args_t* args, context_t* context, int pdu, results_t* results) -{ - // State variables: - int frame = 0; // Current LTE frame - bool hop1_active = false; - bool hop2_active = false; - bool start_hop2; - int round_hop1 = 0; // Current HARQ round in hop 1 - int round_hop2 = 0; // Current HARQ round in hop 2 - int rounds_hop1; // Number of rounds in hop 1 before hop 2 started - int rounds_hop2; // Number of rounds in hop 2 until CH decoded - relay_role_t relay_role[MAX_RELAYS]; // the roles of the relays in Alamouti coding - bool decoded_at_all_mr; - bool decoded_at_mr[MAX_RELAYS]; - bool activate_mr[MAX_RELAYS]; - bool decoded_at_ch; - - LTE_DL_FRAME_PARMS* frame_parms = context->frame_parms; - PHY_VARS_eNB* phy_vars_ch_src = context->phy_vars_ch_src; - PHY_VARS_eNB* phy_vars_ch_dest = context->phy_vars_ch_dest; - PHY_VARS_UE** phy_vars_mr = context->phy_vars_mr; - - DCI_ALLOC_t dci_hop1; - DCI_ALLOC_t dci_hop2; - - int n_symbols_per_slot = (cp_type == 0 ? 7 : 6); - int pilot1_symbol = (cp_type == 0 ? 4 : 3); - - // Temporary variables - int n_re_hop1; - int n_re_hop2; - int n_active_relays; - uint8_t n_used_pdcch_symbols; - uint32_t tx_energy; - //double awgn_stddev; - double tx_ampl; - double raw_ber; - double awgn_stddev; - bool accumulate_at_rx; - int i; - int k; - int l; - int n_iter; - - // Temporary strings - char fnbuf[80]; - char varbuf[80]; - - if(args->verbose == 0) { - printf("Transmitting MAC PDU %d\r", pdu); - fflush(stdout); - } else - printf("Transmitting MAC PDU %d\n", pdu); - - for(k = 0; k < args->n_relays; k++) - decoded_at_mr[k] = false; - - decoded_at_ch = false; - - // Set role of each relay (alternating STANDARD and ALTERNATE) - for(k = 0; k < args->n_relays; k++) { - relay_role[k] = k & 1; - } - - // Generate input data - for(k = 0; k < context->input_buffer_length; k++) - context->input_buffer[k] = (uint8_t)(taus()&0xff); - - hop1_active = true; - - while(hop1_active || hop2_active) { - if(args->verbose > 0) { - fprintf(stderr, "LTE frame %d: hop 1 %s, hop 2 %s, decoded at relays: ", frame, - hop1_active ? "active" : "inactive", - hop2_active ? "active" : "inactive"); - - for(k = 0; k < args->n_relays; k++) - fprintf(stderr, "%s", decoded_at_mr[k] ? "X" : "."); - - fprintf(stderr, "\n"); - } - - for(k = 0; k < args->n_relays; k++) - activate_mr[k] = false; - - // Do hop 1 transmission if hop 1 is active - if(hop1_active) { - // Clear txdataF vector - memset(&phy_vars_ch_src->lte_eNB_common_vars.txdataF[0][0][0], 0, - FRAME_LENGTH_COMPLEX_SAMPLES_NO_PREFIX*sizeof(mod_sym_t)); - - // Fill results - results->mcs_hop1[pdu][round_hop1] = context->mcs_hop1; - results->tbs_hop1[pdu][round_hop1] = context->tbs_hop1; - results->n_prb_hop1[pdu][round_hop1] = args->n_prb_hop1; - - // Create first hop DCI - setup_broadcast_dci(&dci_hop1, context->rnti_hop1, round_hop1, context->mcs_hop1, args->n_prb_hop1); - - if(args->verbose > 1) - dump_dci(frame_parms, &dci_hop1); - - // Generate eNB transport channel parameters - generate_eNB_dlsch_params_from_dci(context->subframe_hop1, dci_hop1.dci_pdu, - context->rnti_hop1, format1, phy_vars_ch_src->dlsch_eNB[0], frame_parms, - SI_RNTI, RA_RNTI, P_RNTI, - phy_vars_ch_src->eNB_UE_stats[0].DL_pmi_single); - - // Create PDCCH - n_used_pdcch_symbols = generate_dci_top(1, 0, &dci_hop1, 0, 1024, frame_parms, - phy_vars_ch_src->lte_eNB_common_vars.txdataF[0], context->subframe_hop1); - - if(n_used_pdcch_symbols > context->n_avail_pdcch_symbols) { - printf("Need %d PDCCH symbols\n", n_used_pdcch_symbols); - exit(1); - } - - // Encode source data - if(dlsch_encoding(context->input_buffer, frame_parms, context->n_avail_pdcch_symbols, - phy_vars_ch_src->dlsch_eNB[0][0], context->subframe_hop1) < 0) - exit(-1); - - // Scramble data - dlsch_scrambling(frame_parms, context->n_avail_pdcch_symbols, - phy_vars_ch_src->dlsch_eNB[0][0], context->n_coded_bits_hop1, 0, context->subframe_hop1 << 1); - - // Modulate data - n_re_hop1 = dlsch_modulation(phy_vars_ch_src->lte_eNB_common_vars.txdataF[0], - 1024, context->subframe_hop1, frame_parms, context->n_avail_pdcch_symbols, - phy_vars_ch_src->dlsch_eNB[0][0]); - - if(args->verbose > 0) - printf("Hop 1, HARQ round %d: %d coded bits, Modulated %d REs\n", round_hop1, context->n_coded_bits_hop1, n_re_hop1); - - if(args->verbose > 2) - print_dlsch_eNB_stats(phy_vars_ch_src->dlsch_eNB[0][0]); - - // Generate pilots - generate_pilots(phy_vars_ch_src, phy_vars_ch_src->lte_eNB_common_vars.txdataF[0], - 1024, LTE_NUMBER_OF_SUBFRAMES_PER_FRAME); - - // OFDM modulation - ofdm_modulation(phy_vars_ch_src->lte_eNB_common_vars.txdataF[0], - phy_vars_ch_src->lte_eNB_common_vars.txdata[0], - frame_parms, context->subframe_hop1, frame_parms->symbols_per_tti/2*3); - - // Compute transmitter signal energy ( E{abs(X)^2} ) - tx_energy = signal_energy(&phy_vars_ch_src->lte_eNB_common_vars.txdata[0][0] - [context->subframe_hop1*frame_parms->samples_per_tti], frame_parms->samples_per_tti); - - // Transmit over channel - for(k = 0; k < args->n_relays; k++) { - //awgn_stddev = sqrt((double)tx_energy*((double)frame_parms->ofdm_symbol_size/(args->n_prb_hop1*12))/pow(10.0, ((double)context->snr_hop1[k])/10.0)/2.0); - awgn_stddev = sqrt((double)tx_energy)/pow(10.0, ((double)context->snr_hop1[k])/20.0); - tx_ampl = awgn_stddev/sqrt((double)tx_energy)*pow(10.0, ((double)context->snr_hop1[k])/20.0); - //printf("hop 1: E=%d, ampl=%f, awgn=%f\n", tx_energy, tx_ampl, awgn_stddev); - - transmit_subframe(context->channels_hop1[k], - phy_vars_ch_src->lte_eNB_common_vars.txdata[0], - frame_parms, context->subframe_hop1, frame_parms->symbols_per_tti+1, tx_ampl, false); - deliver_subframe(context->channels_hop1[k], - phy_vars_mr[k]->lte_ue_common_vars.rxdata, - frame_parms, context->subframe_hop1, frame_parms->symbols_per_tti+1, awgn_stddev); - } - - results->n_frames_hop1++; - - if(!hop2_active) - results->n_harq_tries_hop1[round_hop1]++; - - // Decode at all relays that have not yet decoded - for(k = 0; k < args->n_relays; k++) { - if(decoded_at_mr[k]) - continue; - - // Front end processor up to first pilot - for(l = 0; l <= pilot1_symbol; l++) - slot_fep(phy_vars_mr[k], l, context->subframe_hop1<<1, 0, 0); - - // Skip decoding of DCI - phy_vars_mr[k]->lte_ue_pdcch_vars[0]->crnti = context->rnti_hop1; - phy_vars_mr[k]->lte_ue_pdcch_vars[0]->num_pdcch_symbols = context->n_avail_pdcch_symbols; - generate_ue_dlsch_params_from_dci(context->subframe_hop1, dci_hop1.dci_pdu, context->rnti_hop1, - format1, phy_vars_mr[k]->dlsch_ue[0], frame_parms, SI_RNTI, RA_RNTI, P_RNTI); - - // Receive DLSCH data - // Front end processor up to second pilot - for(l = pilot1_symbol+1; l < n_symbols_per_slot; l++) - slot_fep(phy_vars_mr[k], l, context->subframe_hop1<<1, 0, 0); - - slot_fep(phy_vars_mr[k], 0, (context->subframe_hop1<<1)+1, 0, 0); - - // Receive DLSCH for first slot - if(rx_dlsch_symbol(phy_vars_mr[k], context->subframe_hop1, context->n_avail_pdcch_symbols, 1) == -1) - break; - - for(l = context->n_avail_pdcch_symbols + 1; l < n_symbols_per_slot; l++) - if(rx_dlsch_symbol(phy_vars_mr[k], context->subframe_hop1, l, 0) == -1) - break; - - // Front end processor up to third pilot - for(l = 1; l <= pilot1_symbol; l++) - slot_fep(phy_vars_mr[k], l, (context->subframe_hop1<<1)+1, 0, 0); - - // Receive DLSCH up to third pilot - for(l = n_symbols_per_slot; l < n_symbols_per_slot+pilot1_symbol; l++) - if(rx_dlsch_symbol(phy_vars_mr[k], context->subframe_hop1, l, 0) == -1) - break; - - // Front end processor for rest of subframe - for(l = pilot1_symbol+1; l < n_symbols_per_slot; l++) - slot_fep(phy_vars_mr[k], l, (context->subframe_hop1<<1)+1, 0, 0); - - slot_fep(phy_vars_mr[k], 0, (context->subframe_hop1<<1)+2, 0, 0); - - // Receive DLSCH for rest of subframe - for(l = n_symbols_per_slot+pilot1_symbol; l < 2*n_symbols_per_slot; l++) - if(rx_dlsch_symbol(phy_vars_mr[k], context->subframe_hop1, l, 0) == -1) - break; - - // Compute raw bit error rate - raw_ber = compute_ber_soft(phy_vars_ch_src->dlsch_eNB[0][0]->e, - phy_vars_mr[k]->lte_ue_pdsch_vars[0]->llr[0], context->n_coded_bits_hop1); - results->ber_hop1[k] += raw_ber; - context->n_ber_frames_hop1[k]++; - - if(args->verbose > 0) - printf("Received %d bits at MR %d, raw BER: %f\n", context->n_coded_bits_hop1, k, raw_ber); - - // Unscramble received bits - dlsch_unscrambling(frame_parms, phy_vars_mr[k]->lte_ue_pdcch_vars[0]->num_pdcch_symbols, - phy_vars_mr[k]->dlsch_ue[0][0], context->n_coded_bits_hop1, phy_vars_mr[k]->lte_ue_pdsch_vars[0]->llr[0], - 0, context->subframe_hop1 << 1); - - // Decode received bits - n_iter = dlsch_decoding(phy_vars_mr[k]->lte_ue_pdsch_vars[0]->llr[0], - frame_parms, phy_vars_mr[k]->dlsch_ue[0][0], context->subframe_hop1, - phy_vars_mr[k]->lte_ue_pdcch_vars[0]->num_pdcch_symbols); - - if(args->verbose > 2) - print_dlsch_ue_stats(phy_vars_mr[k]->dlsch_ue[0][0]); - - if(n_iter <= MAX_TURBO_ITERATIONS) { - if(args->verbose > 0) - printf("Successfully decoded at MR %d\n", k); - - activate_mr[k] = true; - - // copy received data to intermediate buffer - memcpy(context->mr_buffer[k], phy_vars_mr[k]->dlsch_ue[0][0]->harq_processes[0]->b, context->tbs_col>>3); - //memset(&context->mr_buffer[k][context->tbs_col>>3], 0, context->mr_buffer_length+4-(context->tbs_col>>3)); - } - } - - // Write debug signals if required - if(args->debug_output) { - if(round_hop1 == 0) - write_output("hop1_e.m", "e", phy_vars_ch_src->dlsch_eNB[0][0]->e, context->n_coded_bits_hop1, 1, 4); - - snprintf(fnbuf, 80, "hop1_r%d_ch_txdataFv.m", round_hop1); - snprintf(varbuf, 80, "hop1_r%d_ch_txdataF", round_hop1); - write_output(fnbuf, varbuf, phy_vars_ch_src->lte_eNB_common_vars.txdataF[0][0], - FRAME_LENGTH_COMPLEX_SAMPLES_NO_PREFIX, 1, 1); - snprintf(fnbuf, 80, "hop1_r%d_ch_txdatav.m", round_hop1); - snprintf(varbuf, 80, "hop1_r%d_ch_txdata", round_hop1); - write_output(fnbuf, varbuf, phy_vars_ch_src->lte_eNB_common_vars.txdata[0][0], - 10*frame_parms->samples_per_tti, 1, 1); - - for(k = 0; k < args->n_relays; k++) { - snprintf(fnbuf, 80, "hop1_r%d_mr%d_rxdatav.m", round_hop1, k); - snprintf(varbuf, 80, "hop1_r%d_mr%d_rxdata", round_hop1, k); - write_output(fnbuf, varbuf, phy_vars_mr[k]->lte_ue_common_vars.rxdata[0], - 10*frame_parms->samples_per_tti, 1, 1); - snprintf(fnbuf, 80, "hop1_r%d_mr%d_rxdataFv.m", round_hop1, k); - snprintf(varbuf, 80, "hop1_r%d_mr%d_rxdataF", round_hop1, k); - write_output(fnbuf, varbuf, phy_vars_mr[k]->lte_ue_common_vars.rxdataF[0], - 2*frame_parms->ofdm_symbol_size*2*n_symbols_per_slot, 2, 1); - } - } - } - - if(hop2_active) { - // Fill results - results->mcs_hop2[pdu][round_hop2] = context->mcs_hop2; - results->tbs_hop2[pdu][round_hop2] = context->tbs_hop2; - results->n_prb_hop2[pdu][round_hop2] = args->n_prb_hop2; - l = 0; - - for(k = args->n_relays-1; k >= 0; k--) - if(decoded_at_mr[k]) - l = (l << 1) + 1; - else - l = (l << 1); - - results->relay_activity[l]++; - - // create second hop dci - setup_distributed_dci(&dci_hop2, context->rnti_hop2, round_hop2, context->mcs_hop2, args->n_prb_hop2); - - if(args->verbose > 1) - dump_dci(frame_parms, &dci_hop2); - - if(args->verbose > 0) - printf("Hop 2, HARQ round %d\n", round_hop2); - - // Clear eNB receive vector - memset(phy_vars_ch_dest->lte_eNB_common_vars.rxdata[0][0], 0, FRAME_LENGTH_COMPLEX_SAMPLES*sizeof(int)); - - // Determine how many relays are active for this transmission, split the total power between them - n_active_relays = 0; - - for(k = 0; k < args->n_relays; k++) - if(decoded_at_mr[k]) - n_active_relays++; - - // Normalization of received signal, fix this.. - tx_energy = 300.0e3; - // awgn_stddev = sqrt((double)tx_energy)/pow(10.0, ((double)context->snr_hop2[0])/20.0); - awgn_stddev = pow(10,.05*40); - - // for(k = 1; k < args->n_relays; k++) - // awgn_stddev = min(sqrt((double)tx_energy)/pow(10.0, ((double)context->snr_hop2[k])/20.0), awgn_stddev); - // printf("hop2 awgn_stddev %f\n",10*log10(awgn_stddev)); - // transmit from all active relays - accumulate_at_rx = false; - - for(k = 0; k < args->n_relays; k++) { - if(!decoded_at_mr[k]) - continue; - - // Clear txdataF vector - memset(phy_vars_mr[k]->lte_ue_common_vars.txdataF[0], 0, - FRAME_LENGTH_COMPLEX_SAMPLES_NO_PREFIX*sizeof(mod_sym_t)); - - // Generate transport channel parameters - generate_ue_ulsch_params_from_dci(dci_hop2.dci_pdu, context->rnti_hop2, - ul_subframe2pdcch_alloc_subframe(&phy_vars_mr[k]->lte_frame_parms,context->subframe_hop2),//(context->subframe_hop2+6)%10, - format0, phy_vars_mr[k], SI_RNTI, RA_RNTI, P_RNTI, 0, 0); - - // Set relay role in Alamouti coding (this could be done better) - if(relay_role[k] == RELAY_ROLE_STANDARD) { - phy_vars_mr[k]->ulsch_ue[0]->cooperation_flag = 0; - } else { - phy_vars_mr[k]->ulsch_ue[0]->cooperation_flag = 2; - } - - // Generate uplink reference signal - generate_drs_pusch(phy_vars_mr[k], 0, AMP, context->subframe_hop2, 0, args->n_prb_hop2); - - // Encode ULSCH data - // printf("transmit_one_pdu 1 : ulsch_encoding mr %d\n",k); - if(ulsch_encoding(context->mr_buffer[k], frame_parms, phy_vars_mr[k]->ulsch_ue[0], - context->harq_pid_hop2, 1, 0, 1) == -1) { - printf("ulsch_encoding failed\n"); - exit(1); - } - - // Modulate ULSCH data - ulsch_modulation(phy_vars_mr[k]->lte_ue_common_vars.txdataF, AMP, 0, context->subframe_hop2, - frame_parms, phy_vars_mr[k]->ulsch_ue[0]); - - // Compute number of resource elements from coded bits and modulation order - n_re_hop2 = context->n_coded_bits_hop2/get_Qm(context->mcs_hop2); - - if(args->verbose > 2) - print_ulsch_ue_stats(phy_vars_mr[k]->ulsch_ue[0]); - - // OFDM modulation - ofdm_modulation(phy_vars_mr[k]->lte_ue_common_vars.txdataF, - phy_vars_mr[k]->lte_ue_common_vars.txdata, frame_parms, context->subframe_hop2, frame_parms->symbols_per_tti); - - tx_energy = signal_energy(&phy_vars_mr[k]->lte_ue_common_vars.txdata[0] - [frame_parms->samples_per_tti*context->subframe_hop2], frame_parms->samples_per_tti); - - // Transmit over channel - // Redo this in a more intuitive manner: - //awgn_stddev = sqrt((double)tx_energy*((double)frame_parms->ofdm_symbol_size/(args->n_prb_hop2*12))/pow(10.0, ((double)context->snr_hop2[k])/10.0)/2.0); - tx_ampl = awgn_stddev/sqrt((double)tx_energy)*pow(10.0, ((double)context->snr_hop2[k])/20.0)/sqrt((double)n_active_relays); - // printf("hop 2 (%d): E=%d, ampl=%f, awgn=%f (accum %d)\n", k,tx_energy, tx_ampl, awgn_stddev,(unsigned char)accumulate_at_rx); - transmit_subframe(context->channels_hop2[k], - phy_vars_mr[k]->lte_ue_common_vars.txdata, frame_parms, - //context->subframe_hop2, frame_parms->symbols_per_tti, 256.0/sqrt((double)n_active_relays)/awgn_stddev, accumulate_at_rx); - context->subframe_hop2, frame_parms->symbols_per_tti, tx_ampl, accumulate_at_rx); - accumulate_at_rx = true; - } - - // This is ugly. Fix it. - deliver_subframe(context->channels_hop2[0], - phy_vars_ch_dest->lte_eNB_common_vars.rxdata[0], frame_parms, - context->subframe_hop2, frame_parms->symbols_per_tti, awgn_stddev); - - results->n_harq_tries_hop2[round_hop2]++; - - // Fill the last symbol of the frame with random data (used for SNR estimation?) - for (i=0; i<OFDM_SYMBOL_SIZE_COMPLEX_SAMPLES; i++) { - ((short*) &phy_vars_ch_dest->lte_eNB_common_vars.rxdata[0][0] - [(frame_parms->samples_per_tti<<1) -frame_parms->ofdm_symbol_size])[2*i] = - (short) ((awgn_stddev*0.707*gaussdouble(0.0,1.0))); - ((short*) &phy_vars_ch_dest->lte_eNB_common_vars.rxdata[0][0] - [(frame_parms->samples_per_tti<<1) -frame_parms->ofdm_symbol_size])[2*i+1] = - (short) ((awgn_stddev*0.707*gaussdouble(0.0,1.0))); - } - - // Generate eNB transport channel parameters - generate_eNB_ulsch_params_from_dci(dci_hop2.dci_pdu, context->rnti_hop2, - ul_subframe2pdcch_alloc_subframe(&phy_vars_ch_dest->lte_frame_parms,context->subframe_hop2),//(context->subframe_hop2+6)%10, - format0, 0, phy_vars_ch_dest, SI_RNTI, RA_RNTI, P_RNTI, 0); - - // Front end processing at destination CH - for(l = 0; l < frame_parms->symbols_per_tti>>1; l++) - slot_fep_ul(frame_parms, &phy_vars_ch_dest->lte_eNB_common_vars, l, 2*context->subframe_hop2, 0, 0); - - for(l = 0; l < frame_parms->symbols_per_tti>>1; l++) - slot_fep_ul(frame_parms, &phy_vars_ch_dest->lte_eNB_common_vars, l, 2*context->subframe_hop2+1, 0, 0); - - // Receive ULSCH data - rx_ulsch(phy_vars_ch_dest, context->subframe_hop2, 0, 0, phy_vars_ch_dest->ulsch_eNB, 2); - - // Compute uncoded bit error rate - k = 0; - - while(!decoded_at_mr[k]) - k++; - - raw_ber = compute_ber_soft(phy_vars_mr[k]->ulsch_ue[0]->b_tilde, - phy_vars_ch_dest->lte_eNB_pusch_vars[0]->llr, context->n_coded_bits_hop2); - results->ber_hop2 += raw_ber; - context->n_ber_frames_hop2++; - results->n_frames_hop2++; - - if(args->verbose > 0) { - printf("Received %d bits at dest CH, raw BER: %f\n", context->n_coded_bits_hop2, raw_ber); - } - - // Decode ULSCH data - n_iter = ulsch_decoding(phy_vars_ch_dest, 0, context->subframe_hop2, 0, 1); - - if(args->verbose > 2) - print_ulsch_eNB_stats(phy_vars_ch_dest->ulsch_eNB[0]); - - if(n_iter <= MAX_TURBO_ITERATIONS) { - if(args->verbose > 0) - printf("Successfully decoded at dest CH\n"); - - decoded_at_ch = true; - } - - // Write debug output if requested - if(args->debug_output) { - for(k = 0; k < args->n_relays; k++) { - snprintf(fnbuf, 80, "hop2_r%d_mr%d_txdataFv.m", round_hop2, k); - snprintf(varbuf, 80, "hop2_r%d_mr%d_txdataF", round_hop2, k); - write_output(fnbuf, varbuf, phy_vars_mr[k]->lte_ue_common_vars.txdataF[0], - FRAME_LENGTH_COMPLEX_SAMPLES_NO_PREFIX, 1, 1); - snprintf(fnbuf, 80, "hop2_r%d_mr%d_txdatav.m", round_hop2, k); - snprintf(varbuf, 80, "hop2_r%d_mr%d_txdata", round_hop2, k); - write_output(fnbuf, varbuf, phy_vars_mr[k]->lte_ue_common_vars.txdata[0], - 10*frame_parms->samples_per_tti, 1, 1); - } - - snprintf(fnbuf, 80, "hop2_r%d_ch_rxdatav.m", round_hop2); - snprintf(varbuf, 80, "hop2_r%d_ch_rxdata", round_hop2); - write_output(fnbuf, varbuf, phy_vars_ch_dest->lte_eNB_common_vars.rxdata[0][0], - 10*frame_parms->samples_per_tti, 1, 1); - snprintf(fnbuf, 80, "hop2_r%d_ch_rxdataFv.m", round_hop2); - snprintf(varbuf, 80, "hop2_r%d_ch_rxdataF", round_hop2); - write_output(fnbuf, varbuf, phy_vars_ch_dest->lte_eNB_common_vars.rxdataF[0][0], - 20*frame_parms->ofdm_symbol_size*2*n_symbols_per_slot, 2, 1); - snprintf(fnbuf, 80, "hop2_r%d_ch_rxdataF_ext2v.m", round_hop2); - snprintf(varbuf, 80, "hop2_r%d_ch_rxdataF_ext2", round_hop2); - write_output(fnbuf, varbuf, phy_vars_ch_dest->lte_eNB_pusch_vars[0]->rxdataF_ext2[0][0], - 12*phy_vars_ch_dest->lte_frame_parms.N_RB_UL*n_symbols_per_slot*2, 1, 1); - snprintf(fnbuf, 80, "hop2_r%d_ch_rxdataF_comp.m", round_hop2); - snprintf(varbuf, 80, "hop2_r%d_ch_rxdataF_comp", round_hop2); - write_output(fnbuf, varbuf, phy_vars_ch_dest->lte_eNB_pusch_vars[0]->rxdataF_comp[0][0], - 12*phy_vars_ch_dest->lte_frame_parms.N_RB_UL*n_symbols_per_slot*2, 1, 1); - snprintf(fnbuf, 80, "hop2_r%d_ch_rxdataF_comp_0.m", round_hop2); - snprintf(varbuf, 80, "hop2_r%d_ch_rxdataF_comp_0", round_hop2); - write_output(fnbuf, varbuf, phy_vars_ch_dest->lte_eNB_pusch_vars[0]->rxdataF_comp_0[0][0], - 12*phy_vars_ch_dest->lte_frame_parms.N_RB_UL*n_symbols_per_slot*2, 1, 1); - snprintf(fnbuf, 80, "hop2_r%d_ch_rxdataF_comp_1.m", round_hop2); - snprintf(varbuf, 80, "hop2_r%d_ch_rxdataF_comp_1", round_hop2); - write_output(fnbuf, varbuf, phy_vars_ch_dest->lte_eNB_pusch_vars[0]->rxdataF_comp_1[0][0], - 12*phy_vars_ch_dest->lte_frame_parms.N_RB_UL*n_symbols_per_slot*2, 1, 1); - snprintf(fnbuf, 80, "hop2_r%d_ch_drs_ch_estimates_0.m", round_hop2); - snprintf(varbuf, 80, "hop2_r%d_ch_drs_ch_estimates_0", round_hop2); - write_output(fnbuf, varbuf, phy_vars_ch_dest->lte_eNB_pusch_vars[0]->drs_ch_estimates_0[0][0], - 12*phy_vars_ch_dest->lte_frame_parms.N_RB_UL*n_symbols_per_slot*2, 1, 1); - snprintf(fnbuf, 80, "hop2_r%d_ch_drs_ch_estimates_1.m", round_hop2); - snprintf(varbuf, 80, "hop2_r%d_ch_drs_ch_estimates_1", round_hop2); - write_output(fnbuf, varbuf, phy_vars_ch_dest->lte_eNB_pusch_vars[0]->drs_ch_estimates_1[0][0], - 12*phy_vars_ch_dest->lte_frame_parms.N_RB_UL*n_symbols_per_slot*2, 1, 1); - } - } - - // Activate MRs that decoded during this frame - for(k = 0; k < args->n_relays; k++) - if(activate_mr[k]) { - setup_distributed_dci(&dci_hop2, context->rnti_hop2, 0, context->mcs_hop2, args->n_prb_hop2); - - // Generate transport channel parameters - generate_ue_ulsch_params_from_dci(dci_hop2.dci_pdu, context->rnti_hop2, - ul_subframe2pdcch_alloc_subframe(&phy_vars_mr[k]->lte_frame_parms,context->subframe_hop2),//(context->subframe_hop2+6)%10, - format0, phy_vars_mr[k], SI_RNTI, RA_RNTI, P_RNTI, 0, 0); - - // Set relay role in Alamouti coding (this could be done better) - if(relay_role[k] == RELAY_ROLE_STANDARD) { - phy_vars_mr[k]->ulsch_ue[0]->cooperation_flag = 0; - } else { - phy_vars_mr[k]->ulsch_ue[0]->cooperation_flag = 2; - } - - // Encode ULSCH data - // printf("transmit one pdu 2 : ulsch_encoding mr %d\n",k); - if(ulsch_encoding(context->mr_buffer[k], frame_parms, phy_vars_mr[k]->ulsch_ue[0], - context->harq_pid_hop2, 1, 0, 1) == -1) { - printf("ulsch_encoding failed\n"); - exit(1); - } - - decoded_at_mr[k] = true; - } - - // Do strategy logic - start_hop2 = false; - - switch(args->strategy) { - case strategy_wait_all: - if(hop1_active && !hop2_active) { - // Start hop 2 if all relays have decoded - start_hop2 = true; - - for(k = 0; k < args->n_relays; k++) - if(!decoded_at_mr[k]) - start_hop2 = false; - } - - break; - - case strategy_wait_one: - if(hop1_active && !hop2_active) { - // Start hop 2 if at least one relay has decoded - for(k = 0; k < args->n_relays; k++) - if(decoded_at_mr[k]) - start_hop2 = true; - } - - break; - - default: - exit(1); - } - - // If we start hop 2 now, save statistics for hop 1 - if(start_hop2) { - results->n_harq_success_hop1[round_hop1]++; - results->n_pdu_success_hop1++; - results->n_bits_hop1 += context->tbs_hop1; - rounds_hop1 = round_hop1; - } - - if(hop1_active) { - // Check if all relays decoded the PDU - decoded_at_all_mr = true; - - for(k = 0; k < args->n_relays; k++) - if(!decoded_at_mr[k]) - decoded_at_all_mr = false; - - // Disable hop 1 if all relays decoded or the maximum HARQ round was reached - round_hop1++; - - if(decoded_at_all_mr || round_hop1 == args->n_harq) - hop1_active = false; - } - - if(hop2_active) { - // If successfully decoded at CH2, save statistics - if(decoded_at_ch) { - results->n_harq_success_hop2[round_hop2]++; - results->n_pdu_success_hop2++; - results->n_bits_hop2 += context->tbs_hop2; - rounds_hop2 = round_hop2; - - if(rounds_hop1 < 0 || rounds_hop1 >= MAX_HARQ_ROUNDS) - fprintf(stderr, "rounds_hop1 has invalid value %d\n", rounds_hop1); - else if(rounds_hop2 < 0 || rounds_hop2 >= MAX_HARQ_ROUNDS) - fprintf(stderr, "rounds_hop2 has invalid value %d\n", rounds_hop2); - else - results->n_transmissions[rounds_hop1][rounds_hop2]++; - - if(!block_valid(context->input_buffer, phy_vars_ch_dest->ulsch_eNB[0]->harq_processes[context->harq_pid_hop2]->b, - context->tbs_col/8)) { - printf("MAC PDU %d decoded successfully, but contained errors\n", pdu); - } - } - - // If successfully decoded at CH2 or the maximum HARQ round was reached, disable both hops - round_hop2++; - - if(decoded_at_ch || round_hop2 == args->n_harq) { - hop1_active = false; - hop2_active = false; - } - } - - if(start_hop2) - hop2_active = true; - - frame++; - - /* - if(!decoded_at_all_mr) { - if(args.verbose > 0) - printf("Not decoded at all relays, dropping block\n"); - continue; - } - */ - } -} - -int parse_args(int argc, char** argv, args_t* args) -{ - int c; - int k; - bool snr_set; - const struct option long_options[] = { - {"mcs1", required_argument, NULL, 256}, - {"mcs2", required_argument, NULL, 257}, - {"snr", required_argument, NULL, 258}, - {"snr1", required_argument, NULL, 259}, - {"snr2", required_argument, NULL, 260}, - {"single", no_argument, NULL, 261}, - {"sweep", no_argument, NULL, 262}, - {"bsweep", no_argument, NULL, 263}, - {"csweep", no_argument, NULL, 271}, - {"strategy", required_argument, NULL, 264}, - {"rb1", required_argument, NULL, 265}, - {"rb2", required_argument, NULL, 266}, - {"autorb", no_argument, NULL, 267}, - {"range", required_argument, NULL, 268}, - {"step", required_argument, NULL, 269}, - {"corr", required_argument, NULL, 270}, - {NULL, 0, NULL, 0} - }; - - args->n_relays = 2; - args->debug_output = false; - args->verbose = 0; - args->n_pdu = 1; - args->n_harq = 4; - args->mcs_hop1 = 0; - args->mcs_hop2 = 0; - args->n_prb_hop1 = N_PRB; - args->n_prb_hop2 = N_PRB; - args->autorb = false; - args->channel_model = AWGN; - args->channel_correlation = 0.0; - args->results_fn = 0; - args->analysis = analysis_single; - args->strategy = strategy_wait_all; - args->range = 10.0; - args->step = 1.0; - - for(k = 0; k < args->n_relays; k++) - args->snr_hop1[k] = 10.0; - - for(k = 0; k < args->n_relays; k++) - args->snr_hop2[k] = 10.0; - - snr_set = false; - - while((c = getopt_long(argc, argv, "hovN:n:m:r:H:C:", long_options, NULL)) != -1) { - switch(c) { - case 'h': - return 1; - - case 'o': - args->debug_output = true; - break; - - case 'v': - args->verbose++; - break; - - case 'N': - args->n_relays = atoi(optarg); - - if(args->n_relays <= 0) - return 1; - - break; - - case 'n': - args->n_pdu = atoi(optarg); - - if(args->n_pdu <= 0) - return 1; - - break; - - case 'H': - args->n_harq = atoi(optarg); - break; - - case 'C': - if(strcmp(optarg, "help") == 0) - return 2; - - if(!parse_channel_model(optarg, &args->channel_model)) - return 1; - - break; - - case 'm': - args->mcs_hop1 = args->mcs_hop2 = atoi(optarg); - break; - - case 'r': - args->results_fn = optarg; - break; - - case 256: - args->mcs_hop1 = atoi(optarg); - break; - - case 257: - args->mcs_hop2 = atoi(optarg); - break; - - case 258: - for(k = 0; k < args->n_relays; k++) - args->snr_hop1[k] = atof(optarg); - - for(k = 0; k < args->n_relays; k++) - args->snr_hop2[k] = atof(optarg); - - snr_set = true; - break; - - case 259: - if(!parse_snr(optarg, args->snr_hop1, args->n_relays)) - return 1; - - snr_set = true; - break; - - case 260: - if(!parse_snr(optarg, args->snr_hop2, args->n_relays)) - return 1; - - snr_set = true; - break; - - case 261: - args->analysis = analysis_single; - break; - - case 262: - args->analysis = analysis_snrsweep_a; - break; - - case 263: - args->analysis = analysis_snrsweep_b; - break; - - case 271: - args->analysis = analysis_snrsweep_c; - break; - - case 264: - switch(atoi(optarg)) { - case 1: - args->strategy = strategy_wait_all; - break; - - case 2: - args->strategy = strategy_wait_one; - break; - - default: - return 1; - } - - break; - - case 265: // --rb1 - args->n_prb_hop1 = atoi(optarg); - - if(args->n_prb_hop1 <= 0 || args->n_prb_hop1 > N_PRB) - return 1; - - break; - - case 266: // --rb2 - args->n_prb_hop2 = atoi(optarg); - - if(args->n_prb_hop2 <= 0 || args->n_prb_hop2 > N_PRB) - return 1; - - break; - - case 267: // --autorb - args->autorb = true; - break; - - case 268: // --range - args->range = atof(optarg); - - if(args->range <= 0.0) - return 1; - - break; - - case 269: // --step - args->step = atof(optarg); - - if(args->step <= 0.0) - return 1; - - break; - - case 270: // --corr - args->channel_correlation = atof(optarg); - - if(args->channel_correlation < 0.0 || args->channel_correlation > 1.0) - return 1; - - break; - - default: - return 1; - } - } - - return 0; -} - -bool parse_snr(const char* str, double* snr, int n) -{ - char* p; - int k; - - for(k = 0; k < n; k++) { - snr[k] = strtod(str, &p); - - if(p == str) - break; - - str = p; - } - - if(k == 0) - for(k = 1; k < n; k++) - snr[k] = snr[0]; - else if(k < n-1) - return false; - - return true; -} - -int parse_channel_model(const char* str, SCM_t* model) -{ - if(strcmp(str, "0") == 0) *model = AWGN; - else if(strcmp(str, "A") == 0) *model = SCM_A; - else if(strcmp(str, "B") == 0) *model = SCM_B; - else if(strcmp(str, "C") == 0) *model = SCM_C; - else if(strcmp(str, "D") == 0) *model = SCM_D; - else if(strcmp(str, "E") == 0) *model = EPA; - else if(strcmp(str, "F") == 0) *model = EVA; - else if(strcmp(str, "G") == 0) *model = ETU; - else if(strcmp(str, "H") == 0) *model = Rayleigh8; - else if(strcmp(str, "I") == 0) *model = Rayleigh1; - else if(strcmp(str, "J") == 0) *model = Rayleigh1_corr; - else if(strcmp(str, "K") == 0) *model = Rayleigh1_anticorr; - else if(strcmp(str, "L") == 0) *model = Rice8; - else if(strcmp(str, "M") == 0) *model = Rice1; - else return false; - - return true; -} - -void print_usage(const char* prog) -{ - printf("Usage: %s [options]\n", prog); - printf("\n"); - printf(" General options:\n"); - printf(" -h : print usage\n"); - printf(" -v : increase verbosity level [0]\n"); - printf(" -o : output MATLAB signal files (implies -n 1) [no]\n"); - printf(" -r FILE : write results to FILE\n"); - printf(" -N NRELAYS : simulate using NRELAYS relays [2]\n"); - printf(" -n NUM : simulate NUM MAC PDUs [1]\n"); - printf(" -H NUM : do NUM HARQ rounds in each hop [4]\n"); - printf(" note: the hop 1 RVs are 0,0,1,1,2,2,3,3,0,0,..., the hop 2 RVs are 0,2,3,1,...\n"); - printf(" -C CHANNEL : set the channel model, use -C help for available models [AWGN]\n"); - printf(" --corr CORR : set channel realization correlation (0.0 .. 1.0) [0.0]\n"); - printf(" --strategy X : set the HARQ strategy to X [1]\n"); - printf(" 1: decode at all relays before starting hop 2\n"); - printf(" 2: start hop 2 when at least one relay has decoded\n"); - printf("\n"); - printf(" SNR options:\n"); - printf(" --snr SNR : set snr for all links to SNR [10.0]\n"); - printf(" --snr1 SNR : set snr for hop 1 to SNR\n"); - printf(" --snr2 SNR : set snr for hop 2 to SNR\n"); - printf(" for --snr1 and --snr2, SNR may be either a single value or a vector with n_relays elements\n"); - printf(" e.g.: --snr1 \"4.0 6.0\" sets the SNR from CH1 to MR1 and MR2 to 4.0 and 6.0, respectively\n"); - printf("\n"); - printf(" Analysis setup (only one may be specified):\n"); - printf(" --single : single point analysis [default]\n"); - printf(" --sweep : sweep snr of first relay of both hops [-RANGE*STEP..+RANGE*STEP]\n"); - printf(" --bsweep : sweep first relay of hop 1 [-RANGE*STEP..+RANGE*STEP],\n"); - printf(" sweep first relay of hop 2 [+RANGE*STEP..-RANGE*STEP]\n"); - printf(" --range RANGE : set sweep range [10]\n"); - printf(" --step STEP : set sweep step size [1.0]\n"); - printf(" note: the swept range is relative to SNR specified with --snr* options\n"); - printf("\n"); - printf(" Link and resource parameters:\n"); - printf(" -m MCS : set mcs for both hops to MCS [0]\n"); - printf(" --mcs1 MCS : set mcs for hop 1 to MCS\n"); - printf(" --mcs2 MCS : set mcs for hop 2 to MCS\n"); - printf(" --rb1 NUM : set number of resource blocks for hop 1 [%d]\n", N_PRB); - printf(" --rb2 NUM : set number of resource blocks for hop 2 [%d]\n", N_PRB); - //printf(" --autorb : adjust the hop bandwidths to have similar TBS\n"); - printf("\n"); - printf(" Definition of results:\n"); - printf(" BLER is the fraction of MAC PDUs that are not successfully delivered from CH1 to CH2\n"); - printf(" BER is the fraction of coded bits that are incorrectly received for each link\n"); - printf(" avg bits/frame is TBS*n_pdu/n_frames, where n_pdu is the number of successfully received MAC PDUs\n"); - printf(" (for hop 1: decoded by both MR), and n_frames is the number of LTE frames transmitted for the hop\n"); - printf(" norm. delay is the average number of LTE frames required for the successful transmission of a MAC PDU\n"); -} - -void print_channel_usage() -{ - printf("Available channel models:\n"); - printf(" 0: AWGN\n"); - printf(" A: SCM-A\n"); - printf(" B: SCM-B\n"); - printf(" C: SCM-C\n"); - printf(" D: SCM-D\n"); - printf(" E: EPA\n"); - printf(" F: EVA\n"); - printf(" G: ETU\n"); - printf(" H: Rayleigh8\n"); - printf(" I: Rayleigh1\n"); - printf(" J: Rayleigh1_corr\n"); - printf(" K: Rayleigh1_anticorr\n"); - printf(" L: Rice8\n"); - printf(" M: Rice1\n"); -} - -void signal_handler(int sig) -{ - void *array[10]; - size_t size; - - size = backtrace(array, 10); - fprintf(stderr, "Error: signal %d:\n", sig); - backtrace_symbols_fd(array, size, 2); - exit(1); -} - -void setup_single(double** snrs, int* n_tests, double* snr_hop1, double* snr_hop2, int n_relays) -{ - int k; - - *snrs = malloc(2*n_relays*sizeof(double)); - - for(k = 0; k < n_relays; k++) - (*snrs)[k] = snr_hop1[k]; - - for(k = 0; k < n_relays; k++) - (*snrs)[k+n_relays] = snr_hop2[k]; - - *n_tests = 1; -} - -void setup_snrsweep_a(double** snrs, int* n_tests, double* snr_hop1, double* snr_hop2, int n_relays, double step, int start, int end) -{ - int l; - int k; - *n_tests = end-start+1; - - *snrs = malloc((*n_tests)*2*n_relays*sizeof(double)); - - for(l = 0; l < *n_tests; l++) { - (*snrs)[2*n_relays*l] = snr_hop1[0] + step*(start+l); - (*snrs)[2*n_relays*l + n_relays] = snr_hop2[0] + step*(start+l); - - for(k = 1; k < n_relays; k++) { - (*snrs)[2*n_relays*l + k] = snr_hop1[k]; - (*snrs)[2*n_relays*l + n_relays + k] = snr_hop2[k]; - } - } -} - -void setup_snrsweep_b(double** snrs, int* n_tests, double* snr_hop1, double* snr_hop2, int n_relays, double step, int start, int end) -{ - int l; - int k; - *n_tests = end-start+1; - - *snrs = malloc((*n_tests)*2*n_relays*sizeof(double)); - - for(l = 0; l < *n_tests; l++) { - (*snrs)[2*n_relays*l] = snr_hop1[0] + step*(start+l); - (*snrs)[2*n_relays*l + n_relays] = snr_hop2[0] + step*(end-l); - - for(k = 1; k < n_relays; k++) { - (*snrs)[2*n_relays*l + k] = snr_hop1[k]; - (*snrs)[2*n_relays*l + n_relays + k] = snr_hop2[k]; - } - } -} - -void setup_snrsweep_c(double** snrs, int* n_tests, double* snr_hop1, double* snr_hop2, int n_relays, double step, int start, int end) -{ - int l; - int k; - *n_tests = end-start+1; - - *snrs = malloc((*n_tests)*2*n_relays*sizeof(double)); - - for(l = 0; l < *n_tests; l++) { - for(k = 0; k < n_relays; k++) { - (*snrs)[2*n_relays*l + k] = snr_hop1[k] + step*(start+l); - (*snrs)[2*n_relays*l + n_relays + k] = snr_hop2[k] + step*(start+l); - } - } -} - -void setup_frame_params(LTE_DL_FRAME_PARMS* frame_parms, unsigned char transmission_mode) -{ - frame_parms->N_RB_DL = N_PRB; - frame_parms->N_RB_UL = N_PRB; - frame_parms->Nid_cell = NID_CELL; - frame_parms->Ncp = cp_type; - frame_parms->Ncp_UL = cp_type; - frame_parms->nushift = 0; - frame_parms->frame_type = 1; // TDD frames - frame_parms->tdd_config = 1; // TDD frame type 1 - frame_parms->mode1_flag = (transmission_mode == 1 ? 1 : 0); - frame_parms->nb_antennas_tx = n_txantenna_ch; - frame_parms->nb_antennas_rx = n_rxantenna_mr; - - init_frame_parms(frame_parms, oversampling); - phy_init_top(frame_parms); - frame_parms->twiddle_fft = twiddle_fft; - frame_parms->twiddle_ifft = twiddle_ifft; - frame_parms->rev = rev; - - phy_init_lte_top(frame_parms); - - frame_parms->pusch_config_common.ul_ReferenceSignalsPUSCH.groupHoppingEnabled = 1; - frame_parms->pusch_config_common.ul_ReferenceSignalsPUSCH.sequenceHoppingEnabled = 0; - frame_parms->pusch_config_common.ul_ReferenceSignalsPUSCH.groupAssignmentPUSCH = 0; - init_ul_hopping(frame_parms); - //dump_frame_parms(frame_parms); -} - -void setup_phy_vars(LTE_DL_FRAME_PARMS* frame_parms, PHY_VARS_eNB* phy_vars_ch_src, - PHY_VARS_UE** phy_vars_mr, PHY_VARS_eNB* phy_vars_ch_dest, int n_relays) -{ - int k; - - phy_vars_ch_src->lte_frame_parms = *frame_parms; - phy_vars_ch_src->frame = 1; - phy_init_lte_eNB(phy_vars_ch_src, 0, 0, 0); - - for(k = 0; k < n_relays; k++) { - phy_vars_mr[k]->lte_frame_parms = *frame_parms; - phy_vars_mr[k]->frame = 1; - lte_gold(frame_parms, phy_vars_mr[k]->lte_gold_table[0], 0); - lte_gold(frame_parms, phy_vars_mr[k]->lte_gold_table[1], 1); - lte_gold(frame_parms, phy_vars_mr[k]->lte_gold_table[2], 2); - - phy_init_lte_ue(phy_vars_mr[k], 0); - phy_vars_mr[k]->pucch_config_dedicated[0].tdd_AckNackFeedbackMode = bundling; - phy_vars_mr[k]->pusch_config_dedicated[0].betaOffset_ACK_Index = 0; - phy_vars_mr[k]->pusch_config_dedicated[0].betaOffset_RI_Index = 0; - phy_vars_mr[k]->pusch_config_dedicated[0].betaOffset_CQI_Index = 2; - } - - phy_vars_ch_dest->lte_frame_parms = *frame_parms; - phy_vars_ch_dest->frame = 1; - phy_init_lte_eNB(phy_vars_ch_dest, 0, 2, 0); - - phy_vars_ch_dest->transmission_mode[0] = 2; - phy_vars_ch_dest->pucch_config_dedicated[0].tdd_AckNackFeedbackMode = bundling; - phy_vars_ch_dest->pusch_config_dedicated[0].betaOffset_ACK_Index = 0; - phy_vars_ch_dest->pusch_config_dedicated[0].betaOffset_RI_Index = 0; - phy_vars_ch_dest->pusch_config_dedicated[0].betaOffset_CQI_Index = 2; -} - -void alloc_broadcast_transport_channel(PHY_VARS_eNB* phy_vars_ch, PHY_VARS_UE** phy_vars_mr, int n_relays, uint16_t rnti) -{ - int k; - - // Workaround for memory leak: - phy_vars_ch->dlsch_eNB[0][0] = new_eNB_dlsch(1, 8, 0); - free(phy_vars_ch->dlsch_eNB[0][0]->harq_processes[0]->b); - - for(k = 0; k < n_relays; k++) { - phy_vars_mr[k]->dlsch_ue[0][0] = new_ue_dlsch(1, 8, 0); - phy_vars_mr[k]->dlsch_ue[0][0]->mode1_flag = 0; - memset(phy_vars_mr[k]->dlsch_ue[0][0]->rb_alloc, 0, 16); - } -} - -void free_broadcast_transport_channel(PHY_VARS_eNB* phy_vars_ch, PHY_VARS_UE** phy_vars_mr, int n_relays) -{ - int k; - - // Workaround for memory leak: - phy_vars_ch->dlsch_eNB[0][0]->harq_processes[0]->b = 0; - free_eNB_dlsch(phy_vars_ch->dlsch_eNB[0][0]); - - for(k = 0; k < n_relays; k++) { - free_ue_dlsch(phy_vars_mr[k]->dlsch_ue[0][0]); - } -} - -void alloc_distributed_transport_channel(PHY_VARS_eNB* phy_vars_ch, PHY_VARS_UE** phy_vars_mr, int n_relays, uint16_t rnti) -{ - int k; - int l; - - for(k = 0; k < n_relays; k++) { - phy_vars_mr[k]->ulsch_ue[0] = new_ue_ulsch(8, 0); - phy_vars_mr[k]->ulsch_ue[0]->o_ACK[0] = 0; - phy_vars_mr[k]->ulsch_ue[0]->o_ACK[1] = 0; - phy_vars_mr[k]->ulsch_ue[0]->o_ACK[2] = 0; - phy_vars_mr[k]->ulsch_ue[0]->o_ACK[3] = 0; - - for(l = 0; l < 3; l++) - if(phy_vars_mr[k]->ulsch_ue[0]->harq_processes[l]) { - phy_vars_mr[k]->ulsch_ue[0]->harq_processes[l]->status = DISABLED; - phy_vars_mr[k]->ulsch_ue[0]->harq_processes[l]->B = 0; - } - } - - phy_vars_ch->ulsch_eNB[0] = new_eNB_ulsch(8, 0); -} - -void free_distributed_transport_channel(PHY_VARS_eNB* phy_vars_ch, PHY_VARS_UE** phy_vars_mr, int n_relays) -{ - int k; - - for(k = 0; k < n_relays; k++) { - free_ue_ulsch(phy_vars_mr[k]->ulsch_ue[0]); - } - - //free_eNB_ulsch(phy_vars_ch->ulsch_eNB[0]); -} - -uint16_t rballoc_type0(int n_rb, int rbg_size) -{ - int rb = 0; - int k; - - for(k = 0; k < n_rb; k += rbg_size) - rb = (rb << 1) + 1; - - return rb; -} - -void setup_broadcast_dci(DCI_ALLOC_t* dci, uint16_t rnti, int harq_round, int mcs, int n_rb) -{ - DCI1_5MHz_TDD_t* dci_data = (DCI1_5MHz_TDD_t*) dci->dci_pdu; - - memset(dci, 0, sizeof(DCI_ALLOC_t)); - - dci_data->dai = 1; - dci_data->TPC = 0; - dci_data->rv = (harq_round >> 1) & 0x03; - dci_data->ndi = (harq_round == 0 ? 1 : 0); - dci_data->harq_pid = 0; - dci_data->mcs = mcs; - dci_data->rballoc = rballoc_type0(n_rb, RBG_SIZE); - dci_data->rah = 0; - - dci->dci_length = sizeof_DCI1_5MHz_TDD_t; - dci->L = 1; - dci->rnti = rnti; - dci->format = format1; -} - -void setup_distributed_dci(DCI_ALLOC_t* dci, uint16_t rnti, int harq_round, int mcs, int n_rb) -{ - DCI0_5MHz_TDD_1_6_t* dci_data = (DCI0_5MHz_TDD_1_6_t*) dci->dci_pdu; - - memset(dci, 0, sizeof(DCI_ALLOC_t)); - - dci_data->cqi_req = 0; - dci_data->dai = 1; - dci_data->cshift = 0; - dci_data->TPC = 0; - - if(harq_round == 0) { - dci_data->ndi = 1; - dci_data->mcs = mcs; - } else { - dci_data->ndi = 0; - - switch(harq_round % 4) { - case 0: - dci_data->mcs = mcs; - break; - - case 1: - // dci_data->mcs = 30; - dci_data->mcs = mcs; - break; - - case 2: - // dci_data->mcs = 31; - dci_data->mcs = 29; - break; - - case 3: - dci_data->mcs = 29; - break; - } - } - - dci_data->rballoc = computeRIV(N_PRB,0,n_rb); - dci_data->hopping = 0; - dci_data->type = 0; - - dci->dci_length = sizeof_DCI0_5MHz_TDD_1_6_t; - dci->L = 1; - dci->rnti = rnti; - dci->format = format0; -} - -void ofdm_modulation(mod_sym_t** tx_f, int32_t** tx_t, LTE_DL_FRAME_PARMS* frame_parms, uint8_t subframe, uint8_t nsymb) -{ - mod_sym_t* src; - int32_t* dst; - - if(frame_parms->Ncp == 0) { // Normal prefix - src = &tx_f[0][subframe*14*frame_parms->ofdm_symbol_size]; - dst = &tx_t[0][subframe*frame_parms->samples_per_tti]; - normal_prefix_mod(src, dst, nsymb, frame_parms); - } else { // Extended prefix - src = &tx_f[0][subframe*12*frame_parms->ofdm_symbol_size]; - dst = &tx_t[0][subframe*frame_parms->samples_per_tti]; - PHY_ofdm_mod(src, dst, frame_parms->log2_symbol_size, - nsymb, frame_parms->nb_prefix_samples, frame_parms->twiddle_ifft, - frame_parms->rev, CYCLIC_PREFIX); - } -} - -channel_vars_t alloc_channel_vars(LTE_DL_FRAME_PARMS* frame_parms) -{ - channel_vars_t v; - v.s_re[0] = malloc(FRAME_LENGTH_COMPLEX_SAMPLES*sizeof(double)); - v.s_im[0] = malloc(FRAME_LENGTH_COMPLEX_SAMPLES*sizeof(double)); - v.r_re[0] = malloc(FRAME_LENGTH_COMPLEX_SAMPLES*sizeof(double)); - v.r_im[0] = malloc(FRAME_LENGTH_COMPLEX_SAMPLES*sizeof(double)); - v.r_re_t[0] = malloc(FRAME_LENGTH_COMPLEX_SAMPLES*sizeof(double)); - v.r_im_t[0] = malloc(FRAME_LENGTH_COMPLEX_SAMPLES*sizeof(double)); - return v; -} - -void free_channel_vars(channel_vars_t v) -{ - free(v.s_re[0]); - free(v.s_im[0]); - free(v.r_re[0]); - free(v.r_im[0]); - free(v.r_re_t[0]); - free(v.r_im_t[0]); -} - -sh_channel_t* alloc_sh_channel(channel_vars_t* cvars, SCM_t channel_model, int n_txantennas, int n_rxantennas, - double channel_correlation) -{ - sh_channel_t* ch = malloc(sizeof(sh_channel_t)); - - ch->cvars = cvars; - ch->channel = new_channel_desc_scm(n_txantennas, n_rxantennas, channel_model, BW, channel_correlation, 0, 0.0); - - return ch; -} - -void free_sh_channel(sh_channel_t* c) -{ - free(c->channel); -} - -void transmit_subframe(sh_channel_t* channel, int32_t** src, LTE_DL_FRAME_PARMS* frame_parms, - uint8_t subframe, uint8_t nsymb, double ampl, bool accumulate) -{ - int k; - int symbols_per_slot = (frame_parms->Ncp == 0 ? 7 : 6); - int nsamples = 0; - - for(k = 0; k < nsymb; k++) { - if(k % symbols_per_slot == 0) - nsamples += frame_parms->nb_prefix_samples0; - else - nsamples += frame_parms->nb_prefix_samples; - - nsamples += frame_parms->ofdm_symbol_size; - } - - for(k = 0; k < nsamples; k++) { - channel->cvars->s_re[0][k] = (double)((int16_t*)src[0])[2*subframe*frame_parms->samples_per_tti + (k<<1)]; - channel->cvars->s_im[0][k] = (double)((int16_t*)src[0])[2*subframe*frame_parms->samples_per_tti + (k<<1) + 1]; - /* - if(accumulate) { - channel->cvars->r_re_t[0][k] = channel->cvars->s_re[0][k]; - channel->cvars->r_im_t[0][k] = channel->cvars->s_im[0][k]; - } else { - channel->cvars->r_re[0][k] = channel->cvars->s_re[0][k]; - channel->cvars->r_im[0][k] = channel->cvars->s_im[0][k]; - } - */ - //channel->cvars->s_re[1][k] = 0; - //channel->cvars->s_im[1][k] = 0; - } - - if(accumulate) { - multipath_channel(channel->channel, channel->cvars->s_re, channel->cvars->s_im, - channel->cvars->r_re_t, channel->cvars->r_im_t, nsamples, 0); - - for(k = 0; k < nsamples; k++) { - channel->cvars->r_re[0][k] += channel->cvars->r_re_t[0][k] * ampl; - channel->cvars->r_im[0][k] += channel->cvars->r_im_t[0][k] * ampl; - } - } else { - multipath_channel(channel->channel, channel->cvars->s_re, channel->cvars->s_im, - channel->cvars->r_re, channel->cvars->r_im, nsamples, 0); - - for(k = 0; k < nsamples; k++) { - channel->cvars->r_re[0][k] *= ampl; - channel->cvars->r_im[0][k] *= ampl; - } - } -} - -void deliver_subframe(sh_channel_t* channel, int32_t** dst, LTE_DL_FRAME_PARMS* frame_parms, - uint8_t subframe, uint8_t nsymb, double stddev) -{ - int k; - int symbols_per_slot = (frame_parms->Ncp == 0 ? 7 : 6); - int nsamples = 0; - - for(k = 0; k < nsymb; k++) { - // printf("deliver_subframe symbol k %d\n",k); - if(k % symbols_per_slot == 0) - nsamples += frame_parms->nb_prefix_samples0; - else - nsamples += frame_parms->nb_prefix_samples; - - nsamples += frame_parms->ofdm_symbol_size; - } - - for(k = 0; k < nsamples; k++) { - ((int16_t*)dst[0])[2*subframe*frame_parms->samples_per_tti + (k<<1)] = - (int16_t) (channel->cvars->r_re[0][k] + stddev*0.707*gaussdouble(0.0, 1.0)); - ((int16_t*)dst[0])[2*subframe*frame_parms->samples_per_tti + (k<<1) + 1] = - (int16_t) (channel->cvars->r_im[0][k] + stddev*0.707*gaussdouble(0.0, 1.0)); - } -} - -void ofdm_fep(PHY_VARS_UE* phy_vars_mr, uint8_t subframe) -{ - int n_symbols_per_slot = (phy_vars_mr->lte_frame_parms.Ncp == 0 ? 7 : 6); - int slot; - int symbol; - - //slot = subframe; - for(slot = 2*subframe; slot < 2*subframe+2; slot++) - for(symbol = 0; symbol < n_symbols_per_slot; symbol++) - slot_fep(phy_vars_mr, symbol, slot, 0, 0); - - slot_fep(phy_vars_mr, 0, 2*subframe+2, 0, 0); -} - -int rx_dlsch_symbol(PHY_VARS_UE* phy_vars, uint8_t subframe, uint8_t symbol, uint8_t first_symbol) -{ - int s; - s = rx_pdsch(phy_vars, PDSCH, 0, 0, subframe, symbol, first_symbol, 0, 0); - - if(s == -1) - printf("DLSCH receiver error\n"); - - return s; -} - -uint32_t get_ulsch_G(LTE_UE_ULSCH_t *ulsch, uint8_t harq_pid) -{ - uint8_t Q_m = 0; - uint32_t Kr = 0; - int r; - uint32_t sumKr = 0; - uint32_t Qprime; - uint32_t L; - uint32_t G; - uint32_t Q_CQI = 0; - uint32_t Q_RI = 0; - - Q_m = get_Qm(ulsch->harq_processes[harq_pid]->mcs); - - sumKr = 0; - - for (r=0; r<ulsch->harq_processes[harq_pid]->C; r++) { - if (r<ulsch->harq_processes[harq_pid]->Cminus) - Kr = ulsch->harq_processes[harq_pid]->Kminus; - else - Kr = ulsch->harq_processes[harq_pid]->Kplus; - - sumKr += Kr; - } - - Qprime = ulsch->O_RI * ulsch->harq_processes[harq_pid]->Msc_initial * - ulsch->harq_processes[harq_pid]->Nsymb_initial * ulsch->beta_offset_ri_times8; - - if (Qprime > 0) { - if ((Qprime % (8*sumKr)) > 0) - Qprime = 1+(Qprime/(8*sumKr)); - else - Qprime = Qprime/(8*sumKr); - - if (Qprime > 4*ulsch->harq_processes[harq_pid]->nb_rb * 12) - Qprime = 4*ulsch->harq_processes[harq_pid]->nb_rb * 12; - } - - Q_RI = Q_m*Qprime; - - if (ulsch->O < 12) - L=0; - else - L=8; - - Qprime = (ulsch->O + L) * ulsch->harq_processes[harq_pid]->Msc_initial * - ulsch->harq_processes[harq_pid]->Nsymb_initial * ulsch->beta_offset_cqi_times8; - - if (Qprime > 0) { - if ((Qprime % (8*sumKr)) > 0) - Qprime = 1+(Qprime/(8*sumKr)); - else - Qprime = Qprime/(8*sumKr); - } - - G = ulsch->harq_processes[harq_pid]->nb_rb * (12 * Q_m) * (ulsch->Nsymb_pusch); - - if (Qprime > (G - ulsch->O_RI)) - Qprime = G - ulsch->O_RI; - - Q_CQI = Q_m * Qprime; - - G = G - Q_RI - Q_CQI; - - return G; -} - -double compute_ber_soft(uint8_t* ref, int16_t* rec, int n) -{ - int k; - int e = 0; - - for(k = 0; k < n; k++) { - if((ref[k]==1) != (rec[k]<0)) { - //printf("error pos %d ( %d => %d)\n",k,ref[k],rec[k]); - e++; - } - } - - return (double)e / (double)n; -} - -void print_dlsch_eNB_stats(LTE_eNB_DLSCH_t* d) -{ - int k; - LTE_DL_eNB_HARQ_t* h; - - if(d) { - printf("eNB dlsch: rnti=%04x, active=%d, current_harq_pid=%d, rb_alloc=%08x %08x %08x %08x, nb_rb=%d, G=%d, layer_index=%d, codebook_index=%d, Mdlharq=%d, Kmimo=%d\n", - d->rnti, d->active, d->current_harq_pid, - d->rb_alloc[0], d->rb_alloc[1], d->rb_alloc[2], d->rb_alloc[3], d->nb_rb, d->G, - d->layer_index, d->codebook_index, d->Mdlharq, d->Kmimo); - - for(k = 0; k < 8; k++) { - if(d->harq_processes[k]) { - h = d->harq_processes[k]; - - if(h->status == ACTIVE) { - printf("HARQ process %d: Ndi=%d, status=%d, TBS=%d, B=%d, round=%d, mcs=%d, rvidx=%d, Nl=%d\n", - k, h->Ndi, h->status, h->TBS, h->B, h->round, h->mcs, h->rvidx, h->Nl); - } - } - } - } -} - -void print_dlsch_ue_stats(LTE_UE_DLSCH_t* d) -{ - int k; - LTE_DL_UE_HARQ_t* h; - - if(d) { - printf("UE dlsch: rnti=%04x, active=%d, mode1_flag=%d, current_harq_pid=%d, rb_alloc=%08x %08x %08x %08x, nb_rb=%d, G=%d, layer_index=%d, Mdlharq=%d, Kmimo=%d\n", - d->rnti, d->active, d->mode1_flag, d->current_harq_pid, - d->rb_alloc[0], d->rb_alloc[1], d->rb_alloc[2], d->rb_alloc[3], d->nb_rb, d->G, - d->layer_index, d->Mdlharq, d->Kmimo); - - for(k = 0; k < 8; k++) { - if(d->harq_processes[k]) { - h = d->harq_processes[k]; - - if(h->status == ACTIVE || h->TBS > 0) { - printf("HARQ process %d: Ndi=%d, status=%d, TBS=%d, B=%d, round=%d, mcs=%d, rvidx=%d, Nl=%d\n", - k, h->Ndi, h->status, h->TBS, h->B, h->round, h->mcs, h->rvidx, h->Nl); - } - } - } - } -} - -void print_ulsch_ue_stats(LTE_UE_ULSCH_t* d) -{ - int k; - LTE_UL_UE_HARQ_t* h; - - if(d) { - printf("UE ulsch: Nsymb_pusch=%d, O=%d, o_ACK=%d %d %d %d, O_ACK=%d, Mdlharq=%d, n_DMRS2=%d, cooperation_flag=%d\n", - d->Nsymb_pusch, d->O, d->o_ACK[0], d->o_ACK[1], d->o_ACK[2], d->o_ACK[3], d->O_ACK, d->Mdlharq, d->n_DMRS2, d->cooperation_flag); - - for(k = 0; k < 3; k++) { - if(d->harq_processes[k]) { - h = d->harq_processes[k]; - - if(h->status == ACTIVE) { - printf("HARQ process %d: Ndi=%d, status=%d, subframe_scheduling_flag=%d, first_rb=%d, nb_rb=%d, TBS=%d, B=%d, round=%d, mcs=%d, rvidx=%d\n", - k, h->Ndi, h->status, h->subframe_scheduling_flag, h->first_rb, h->nb_rb, h->TBS, h->B, h->round, h->mcs, h->rvidx); - } - } - } - } -} - -void print_ulsch_eNB_stats(LTE_eNB_ULSCH_t* d) -{ - int k; - LTE_UL_eNB_HARQ_t* h; - - if(d) { - printf("eNB ulsch: Nsymb_pusch=%d, Mdlharq=%d, cqi_crc_status=%d, Or1=%d, Or2=%d, o_RI=%d %d, O_RI=%d, o_ACK=%d %d %d %d, O_ACK=%d, o_RCC=%d, beta_offset_cqi_times8=%d, beta_offset_ri_times8=%d, beta_offset_harqack_times8=%d, rnti=%x, n_DMRS2=%d, cyclicShift=%d, cooperation_flag=%d\n", - d->Nsymb_pusch, d->Mdlharq, d->cqi_crc_status, d->Or1, d->Or2, d->o_RI[0], d->o_RI[1], d->O_RI, d->o_ACK[0], d->o_ACK[1], d->o_ACK[2], d->o_ACK[3], d->O_ACK, d->o_RCC, d->beta_offset_cqi_times8, - d->beta_offset_ri_times8, d->beta_offset_harqack_times8, d->rnti, d->n_DMRS2, d->cyclicShift, d->cooperation_flag); - - for(k = 0; k < 3; k++) { - if(d->harq_processes[k]) { - h = d->harq_processes[k]; - - if(h->status == ACTIVE) { - printf("HARQ process %d: Ndi=%d, status=%d, subframe_scheduling_flag=%d, phich_active=%d, phich_ACK=%d, TPC=%d, first_rb=%d, nb_rb=%d, TBS=%d, B=%d, round=%d, mcs=%d, rvidx=%d\n", - k, h->Ndi, h->status, h->subframe_scheduling_flag, h->phich_active, h->phich_ACK, h->TPC, h->first_rb, h->nb_rb, h->TBS, h->B, h->round, h->mcs, h->rvidx); - } - } - } - } -} - -int block_valid(uint8_t* ref, uint8_t* rec, int n) -{ - int k; - - for(k = 0; k < n; k++) { - if(ref[k] != rec[k]) - return 0; - - //printf("%d ",k); - } - - //printf("\n"); - return 1; -} - -void init_results(results_t* r, args_t* a) -{ - int k; - - r->n_relays = a->n_relays; - r->n_pdu = a->n_pdu; - r->n_harq = a->n_harq; - r->channel_model = a->channel_model; - r->mcs_hop1 = malloc(a->n_pdu*sizeof(int*)); - r->mcs_hop2 = malloc(a->n_pdu*sizeof(int*)); - r->tbs_hop1 = malloc(a->n_pdu*sizeof(int*)); - r->tbs_hop2 = malloc(a->n_pdu*sizeof(int*)); - r->n_prb_hop1 = malloc(a->n_pdu*sizeof(int*)); - r->n_prb_hop2 = malloc(a->n_pdu*sizeof(int*)); - - for(k = 0; k < a->n_pdu; k++) { - r->mcs_hop1[k] = malloc(a->n_harq*sizeof(int)); - r->mcs_hop2[k] = malloc(a->n_harq*sizeof(int)); - r->tbs_hop1[k] = malloc(a->n_harq*sizeof(int)); - r->tbs_hop2[k] = malloc(a->n_harq*sizeof(int)); - r->n_prb_hop1[k] = malloc(a->n_harq*sizeof(int)); - r->n_prb_hop2[k] = malloc(a->n_harq*sizeof(int)); - } - - r->relay_activity = malloc((1 << a->n_relays)*sizeof(int)); -} - -void clear_results(results_t* r) -{ - int k; - r->snr_hop1 = 0; - r->snr_hop2 = 0; - r->n_frames_hop1 = 0; - r->n_frames_hop2 = 0; - r->n_bits_hop1 = 0; - r->n_bits_hop2 = 0; - - for(k = 0; k < MAX_RELAYS; k++) { - r->ber_hop1[k] = 0.0; - } - - r->ber_hop2 = 0.0; - r->n_pdu_success_hop1 = 0; - r->n_pdu_success_hop2 = 0; - - for(k = 0; k < MAX_HARQ_ROUNDS; k++) { - r->n_harq_tries_hop1[k] = 0; - r->n_harq_tries_hop2[k] = 0; - r->n_harq_success_hop1[k] = 0; - r->n_harq_success_hop2[k] = 0; - } - - for(k = 0; k < r->n_pdu; k++) { - memset(r->mcs_hop1[k], 0, r->n_harq*sizeof(int)); - memset(r->mcs_hop2[k], 0, r->n_harq*sizeof(int)); - memset(r->tbs_hop1[k], 0, r->n_harq*sizeof(int)); - memset(r->tbs_hop2[k], 0, r->n_harq*sizeof(int)); - memset(r->n_prb_hop1[k], 0, r->n_harq*sizeof(int)); - memset(r->n_prb_hop2[k], 0, r->n_harq*sizeof(int)); - } - - memset(r->n_transmissions, 0, MAX_HARQ_ROUNDS*MAX_HARQ_ROUNDS*sizeof(int)); - memset(r->relay_activity, 0, (1 << (r->n_relays))*sizeof(int)); -} - -void free_results(results_t* r) -{ - int k; - - for(k = 0; k < r->n_pdu; k++) { - free(r->mcs_hop1[k]); - free(r->mcs_hop2[k]); - free(r->tbs_hop1[k]); - free(r->tbs_hop2[k]); - free(r->n_prb_hop1[k]); - free(r->n_prb_hop2[k]); - } - - free(r->mcs_hop1); - free(r->mcs_hop2); - free(r->tbs_hop1); - free(r->tbs_hop2); - free(r->n_prb_hop1); - free(r->n_prb_hop2); - free(r->relay_activity); -} - -void print_results(results_t* r) -{ - int k; - - printf("Hop 1: SNR ("); - - for(k = 0; k < r->n_relays; k++) - printf("%.1f%s", r->snr_hop1[k], k < r->n_relays-1 ? ", " : ""); - - printf("), BER ("); - - for(k = 0; k < r->n_relays; k++) - printf("%f%s", r->ber_hop1[k], k < r->n_relays-1 ? ", " : ""); - - printf(")\n"); - printf(" avg bits/frame %f, avg frames/received PDU %f, avg delay %f\n", - (double)r->n_bits_hop1/(double)r->n_frames_hop1, - (double)r->n_frames_hop1/(double)r->n_pdu_success_hop1, - calc_delay(r->n_harq_success_hop1, r->n_harq)); - //(double)(r->n_frames_hop1-(r->n_harq_tries_hop1[0]-r->n_pdu_success_hop1)*r->n_harq)/(double)r->n_pdu_success_hop1); - printf(" HARQ (n_success/n_tries):"); - - for(k = 0; k < r->n_harq; k++) - printf(" %d/%d", r->n_harq_success_hop1[k], r->n_harq_tries_hop1[k]); - - printf("\n"); - printf("Hop 2: SNR ("); - - for(k = 0; k < r->n_relays; k++) - printf("%.1f%s", r->snr_hop2[k], k < r->n_relays-1 ? ", " : ""); - - printf("), BER %f\n", r->ber_hop2); - printf(" avg bits/frame %f, avg frames/received PDU %f, avg delay %f\n", - (double)r->n_bits_hop2/(double)r->n_frames_hop2, - (double)r->n_frames_hop2/(double)r->n_pdu_success_hop2, - calc_delay(r->n_harq_success_hop2, r->n_harq)); - //(double)(r->n_frames_hop2-(r->n_harq_tries_hop2[0]-r->n_pdu_success_hop2)*r->n_harq)/(double)r->n_pdu_success_hop2); - printf(" HARQ (n_success/n_tries):"); - - for(k = 0; k < r->n_harq; k++) - printf(" %d/%d", r->n_harq_success_hop2[k], r->n_harq_tries_hop2[k]); - - printf("\n"); - printf("Collaborative link BLER: %d/%d\n", r->n_pdu-r->n_pdu_success_hop2, r->n_pdu); - printf("Relay activity:"); - - if(r->n_relays == 2) - printf(" MR1(%d) MR2(%d) MR1+MR2(%d)\n", r->relay_activity[1], r->relay_activity[2], r->relay_activity[3]); - else { - for(k = 1; k < (1 << r->n_relays); k++) - printf(" %d", r->relay_activity[k]); - - printf("\n"); - } -} - -void write_results_header(FILE* f, results_t* r, int n_tests) -{ - fprintf(f, "%d %d %d %d %d\n", r->n_relays, r->channel_model, n_tests, r->n_pdu, r->n_harq); -} -void write_results_data(FILE* f, results_t* r) -{ - int k; - int l; - - for(k = 0; k < r->n_relays; k++) - fprintf(f, "%f ", r->snr_hop1[k]); - - fprintf(f, "\n"); - - for(k = 0; k < r->n_relays; k++) - fprintf(f, "%f ", r->snr_hop2[k]); - - fprintf(f, "\n"); - - fprintf(f, "%d %d %d %d %d %d\n", r->n_frames_hop1, r->n_frames_hop2, - r->n_bits_hop1, r->n_bits_hop2, r->n_pdu_success_hop1, r->n_pdu_success_hop2); - - for(k = 0; k < r->n_relays; k++) - fprintf(f, "%f ", r->ber_hop1[k]); - - fprintf(f, "%f\n", r->ber_hop2); - - for(k = 0; k < r->n_harq; k++) - fprintf(f, "%d ", r->n_harq_tries_hop1[k]); - - fprintf(f, "\n"); - - for(k = 0; k < r->n_harq; k++) - fprintf(f, "%d ", r->n_harq_success_hop1[k]); - - fprintf(f, "\n"); - - for(k = 0; k < r->n_harq; k++) - fprintf(f, "%d ", r->n_harq_tries_hop2[k]); - - fprintf(f, "\n"); - - for(k = 0; k < r->n_harq; k++) - fprintf(f, "%d ", r->n_harq_success_hop2[k]); - - fprintf(f, "\n"); - - for(l = 0; l < r->n_pdu; l++) { - for(k = 0; k < r->n_harq; k++) - fprintf(f, "%d ", r->mcs_hop1[l][k]); - - fprintf(f, "\n"); - } - - for(l = 0; l < r->n_pdu; l++) { - for(k = 0; k < r->n_harq; k++) - fprintf(f, "%d ", r->mcs_hop2[l][k]); - - fprintf(f, "\n"); - } - - for(l = 0; l < r->n_pdu; l++) { - for(k = 0; k < r->n_harq; k++) - fprintf(f, "%d ", r->tbs_hop1[l][k]); - - fprintf(f, "\n"); - } - - for(l = 0; l < r->n_pdu; l++) { - for(k = 0; k < r->n_harq; k++) - fprintf(f, "%d ", r->tbs_hop2[l][k]); - - fprintf(f, "\n"); - } - - for(l = 0; l < r->n_pdu; l++) { - for(k = 0; k < r->n_harq; k++) - fprintf(f, "%d ", r->n_prb_hop1[l][k]); - - fprintf(f, "\n"); - } - - for(l = 0; l < r->n_pdu; l++) { - for(k = 0; k < r->n_harq; k++) - fprintf(f, "%d ", r->n_prb_hop2[l][k]); - - fprintf(f, "\n"); - } - - for(l = 0; l < r->n_harq; l++) { - for(k = 0; k < r->n_harq; k++) - fprintf(f, "%d ", r->n_transmissions[l][k]); - - fprintf(f, "\n"); - } - - for(k = 0; k < (1 << r->n_relays); k++) - fprintf(f, "%d ", r->relay_activity[k]); - - fprintf(f, "\n"); -} - -double calc_delay(int* n_frames, int n_harq) -{ - int n = 0; - int f = 0; - int k; - - for(k = 0; k < n_harq; k++) { - n += n_frames[k]*(k+1); - f += n_frames[k]; - } - - return (double)n/(double)f; -} - diff --git a/openair1/SIMULATION/LOLA_DaF_D42/read_results.m b/openair1/SIMULATION/LOLA_DaF_D42/read_results.m deleted file mode 100644 index e2a8f451f38f815a50b2a2bf29702319fe605163..0000000000000000000000000000000000000000 --- a/openair1/SIMULATION/LOLA_DaF_D42/read_results.m +++ /dev/null @@ -1,86 +0,0 @@ -function r = read_results(f) -%r = read_results(f) -% -%Reads colabsim simulation results from file f. -% -%Arguments: -% f - results file (produced with -r option to colabsim) -% -%Returns: -% r - results structure with the following fields: -% n_relays: number of relays -% channel_model: the used channel model as a string -% n_tests: the number of tests done (each with different SNR) -% n_pdu: the number of sent MAC PDUs for each test -% n_harq: the maximum number of HARQ rounds -% tests: struct array of length n_tests containing the following fields: -% snr_hop{1,2}: SNRs for each link in hop {1,2} -% n_frames_hop{1,2}: number of transmitted LTE frames in hop {1,2} -% n_bits_hop{1,2}: number of correctly received information bits in hop {1,2} -% n_pdu_success_hop{1,2}: number of correctly received MAC PDUs in hop {1,2} -% ber_hop1: vector of average raw BER at relays -% ber_hop2: average raw BER at destination CH -% n_harq_tries_hop{1,2}: number of transmitted MAC PDUs in each HARQ round in hop {1,2} -% n_harq_success_hop{1,2}: number of successfully decoded MAC PDUs in each HARQ round in hop {1,2} -% mcs_hop{1,2}: MCS used in each transmission in hop {1,2} -% tbs_hop{1,2}: TBS used in each transmission in hop {1,2} -% n_rb_hop{1,2}: number of resource blocks used in each transmission in hop {1,2} -% n_transmissions: distribution of the number of required transmissions in each hop for the -% successfully decoded MAC PDUs, n_transmissions(n1,n2) is the number of successfully decoded -% MAC PDUs that required n1 transmissions in hop 1 and n2 transmissions in hop 2 -% relay_activity: number of transmissions with different cooperation level of relays, -% for n_relays==2 there are four values: [0 MR1 MR2 MR1+MR2], this is for all transmissions -% over hop 2, even if the PDU was not finally received at the destination CH - -fid = fopen(f, 'r'); - -A = mread(fid, 1, 5); -r.n_relays = A(1); -r.channel_model = parse_channel(A(2)); -r.n_tests = A(3); -r.n_pdu = A(4); -r.n_harq = A(5); - -n_relays = A(1); -n_tests = A(3); -n_pdu = A(4); -n_harq = A(5); - -test_row = 1; -for test = 1:n_tests - r.tests(test).snr_hop1 = mread(fid, 1, n_relays); - r.tests(test).snr_hop2 = mread(fid, 1, n_relays); - A = mread(fid, 1, 6); - r.tests(test).n_frames_hop1 = A(1); - r.tests(test).n_frames_hop2 = A(2); - r.tests(test).n_bits_hop1 = A(3); - r.tests(test).n_bits_hop2 = A(4); - r.tests(test).n_pdu_success_hop1 = A(5); - r.tests(test).n_pdu_success_hop2 = A(6); - A = mread(fid, 1, n_relays+1); - r.tests(test).ber_hop1 = A(1:end-1); - r.tests(test).ber_hop2 = A(end); - r.tests(test).n_harq_tries_hop1 = mread(fid, 1, n_harq); - r.tests(test).n_harq_success_hop1 = mread(fid, 1, n_harq); - r.tests(test).n_harq_tries_hop2 = mread(fid, 1, n_harq); - r.tests(test).n_harq_success_hop2 = mread(fid, 1, n_harq); - r.tests(test).mcs_hop1 = mread(fid, n_pdu, n_harq); - r.tests(test).mcs_hop2 = mread(fid, n_pdu, n_harq); - r.tests(test).tbs_hop1 = mread(fid, n_pdu, n_harq); - r.tests(test).tbs_hop2 = mread(fid, n_pdu, n_harq); - r.tests(test).n_rb_hop1 = mread(fid, n_pdu, n_harq); - r.tests(test).n_rb_hop2 = mread(fid, n_pdu, n_harq); - r.tests(test).n_transmissions = mread(fid, n_harq, n_harq); - r.tests(test).relay_activity = mread(fid, 1, 2^n_relays); -end - -fclose(fid); - -function s = parse_channel(c) - -s = sprintf('%d', c); - -function A = mread(fid, nrow, ncol) - -A = fscanf(fid, '%f', [ncol,nrow])'; -