diff --git a/openair1/SIMULATION/LTE_RECIPROCITY/COPYING b/openair1/SIMULATION/LTE_RECIPROCITY/COPYING deleted file mode 100644 index 818433ecc0e094a4db1023c68b33f24344643ad8..0000000000000000000000000000000000000000 --- a/openair1/SIMULATION/LTE_RECIPROCITY/COPYING +++ /dev/null @@ -1,674 +0,0 @@ - GNU GENERAL PUBLIC LICENSE - Version 3, 29 June 2007 - - Copyright (C) 2007 Free Software Foundation, Inc. <http://fsf.org/> - Everyone is permitted to copy and distribute verbatim copies - of this license document, but changing it is not allowed. - - Preamble - - The GNU General Public License is a free, copyleft license for -software and other kinds of works. - - The licenses for most software and other practical works are designed -to take away your freedom to share and change the works. By contrast, -the GNU General Public License is intended to guarantee your freedom to -share and change all versions of a program--to make sure it remains free -software for all its users. We, the Free Software Foundation, use the -GNU General Public License for most of our software; it applies also to -any other work released this way by its authors. You can apply it to -your programs, too. - - When we speak of free software, we are referring to freedom, not -price. Our General Public Licenses are designed to make sure that you -have the freedom to distribute copies of free software (and charge for -them if you wish), that you receive source code or can get it if you -want it, that you can change the software or use pieces of it in new -free programs, and that you know you can do these things. - - To protect your rights, we need to prevent others from denying you -these rights or asking you to surrender the rights. Therefore, you have -certain responsibilities if you distribute copies of the software, or if -you modify it: responsibilities to respect the freedom of others. - - For example, if you distribute copies of such a program, whether -gratis or for a fee, you must pass on to the recipients the same -freedoms that you received. You must make sure that they, too, receive -or can get the source code. And you must show them these terms so they -know their rights. - - Developers that use the GNU GPL protect your rights with two steps: -(1) assert copyright on the software, and (2) offer you this License -giving you legal permission to copy, distribute and/or modify it. - - For the developers' and authors' protection, the GPL clearly explains -that there is no warranty for this free software. For both users' and -authors' sake, the GPL requires that modified versions be marked as -changed, so that their problems will not be attributed erroneously to -authors of previous versions. - - Some devices are designed to deny users access to install or run -modified versions of the software inside them, although the manufacturer -can do so. This is fundamentally incompatible with the aim of -protecting users' freedom to change the software. The systematic -pattern of such abuse occurs in the area of products for individuals to -use, which is precisely where it is most unacceptable. Therefore, we -have designed this version of the GPL to prohibit the practice for those -products. If such problems arise substantially in other domains, we -stand ready to extend this provision to those domains in future versions -of the GPL, as needed to protect the freedom of users. - - Finally, every program is threatened constantly by software patents. -States should not allow patents to restrict development and use of -software on general-purpose computers, but in those that do, we wish to -avoid the special danger that patents applied to a free program could -make it effectively proprietary. To prevent this, the GPL assures that -patents cannot be used to render the program non-free. - - The precise terms and conditions for copying, distribution and -modification follow. - - TERMS AND CONDITIONS - - 0. Definitions. - - "This License" refers to version 3 of the GNU General Public License. - - "Copyright" also means copyright-like laws that apply to other kinds of -works, such as semiconductor masks. - - "The Program" refers to any copyrightable work licensed under this -License. Each licensee is addressed as "you". "Licensees" and -"recipients" may be individuals or organizations. - - To "modify" a work means to copy from or adapt all or part of the work -in a fashion requiring copyright permission, other than the making of an -exact copy. The resulting work is called a "modified version" of the -earlier work or a work "based on" the earlier work. - - A "covered work" means either the unmodified Program or a work based -on the Program. - - To "propagate" a work means to do anything with it that, without -permission, would make you directly or secondarily liable for -infringement under applicable copyright law, except executing it on a -computer or modifying a private copy. Propagation includes copying, -distribution (with or without modification), making available to the -public, and in some countries other activities as well. - - To "convey" a work means any kind of propagation that enables other -parties to make or receive copies. Mere interaction with a user through -a computer network, with no transfer of a copy, is not conveying. - - An interactive user interface displays "Appropriate Legal Notices" -to the extent that it includes a convenient and prominently visible -feature that (1) displays an appropriate copyright notice, and (2) -tells the user that there is no warranty for the work (except to the -extent that warranties are provided), that licensees may convey the -work under this License, and how to view a copy of this License. If -the interface presents a list of user commands or options, such as a -menu, a prominent item in the list meets this criterion. - - 1. Source Code. - - The "source code" for a work means the preferred form of the work -for making modifications to it. "Object code" means any non-source -form of a work. - - A "Standard Interface" means an interface that either is an official -standard defined by a recognized standards body, or, in the case of -interfaces specified for a particular programming language, one that -is widely used among developers working in that language. - - The "System Libraries" of an executable work include anything, other -than the work as a whole, that (a) is included in the normal form of -packaging a Major Component, but which is not part of that Major -Component, and (b) serves only to enable use of the work with that -Major Component, or to implement a Standard Interface for which an -implementation is available to the public in source code form. A -"Major Component", in this context, means a major essential component -(kernel, window system, and so on) of the specific operating system -(if any) on which the executable work runs, or a compiler used to -produce the work, or an object code interpreter used to run it. - - The "Corresponding Source" for a work in object code form means all -the source code needed to generate, install, and (for an executable -work) run the object code and to modify the work, including scripts to -control those activities. However, it does not include the work's -System Libraries, or general-purpose tools or generally available free -programs which are used unmodified in performing those activities but -which are not part of the work. For example, Corresponding Source -includes interface definition files associated with source files for -the work, and the source code for shared libraries and dynamically -linked subprograms that the work is specifically designed to require, -such as by intimate data communication or control flow between those -subprograms and other parts of the work. - - The Corresponding Source need not include anything that users -can regenerate automatically from other parts of the Corresponding -Source. - - The Corresponding Source for a work in source code form is that -same work. - - 2. Basic Permissions. - - All rights granted under this License are granted for the term of -copyright on the Program, and are irrevocable provided the stated -conditions are met. This License explicitly affirms your unlimited -permission to run the unmodified Program. The output from running a -covered work is covered by this License only if the output, given its -content, constitutes a covered work. This License acknowledges your -rights of fair use or other equivalent, as provided by copyright law. - - You may make, run and propagate covered works that you do not -convey, without conditions so long as your license otherwise remains -in force. You may convey covered works to others for the sole purpose -of having them make modifications exclusively for you, or provide you -with facilities for running those works, provided that you comply with -the terms of this License in conveying all material for which you do -not control copyright. Those thus making or running the covered works -for you must do so exclusively on your behalf, under your direction -and control, on terms that prohibit them from making any copies of -your copyrighted material outside their relationship with you. - - Conveying under any other circumstances is permitted solely under -the conditions stated below. Sublicensing is not allowed; section 10 -makes it unnecessary. - - 3. Protecting Users' Legal Rights From Anti-Circumvention Law. - - No covered work shall be deemed part of an effective technological -measure under any applicable law fulfilling obligations under article -11 of the WIPO copyright treaty adopted on 20 December 1996, or -similar laws prohibiting or restricting circumvention of such -measures. - - When you convey a covered work, you waive any legal power to forbid -circumvention of technological measures to the extent such circumvention -is effected by exercising rights under this License with respect to -the covered work, and you disclaim any intention to limit operation or -modification of the work as a means of enforcing, against the work's -users, your or third parties' legal rights to forbid circumvention of -technological measures. - - 4. Conveying Verbatim Copies. - - You may convey verbatim copies of the Program's source code as you -receive it, in any medium, provided that you conspicuously and -appropriately publish on each copy an appropriate copyright notice; -keep intact all notices stating that this License and any -non-permissive terms added in accord with section 7 apply to the code; -keep intact all notices of the absence of any warranty; and give all -recipients a copy of this License along with the Program. - - You may charge any price or no price for each copy that you convey, -and you may offer support or warranty protection for a fee. - - 5. Conveying Modified Source Versions. - - You may convey a work based on the Program, or the modifications to -produce it from the Program, in the form of source code under the -terms of section 4, provided that you also meet all of these conditions: - - a) The work must carry prominent notices stating that you modified - it, and giving a relevant date. - - b) The work must carry prominent notices stating that it is - released under this License and any conditions added under section - 7. This requirement modifies the requirement in section 4 to - "keep intact all notices". - - c) You must license the entire work, as a whole, under this - License to anyone who comes into possession of a copy. This - License will therefore apply, along with any applicable section 7 - additional terms, to the whole of the work, and all its parts, - regardless of how they are packaged. This License gives no - permission to license the work in any other way, but it does not - invalidate such permission if you have separately received it. - - d) If the work has interactive user interfaces, each must display - Appropriate Legal Notices; however, if the Program has interactive - interfaces that do not display Appropriate Legal Notices, your - work need not make them do so. - - A compilation of a covered work with other separate and independent -works, which are not by their nature extensions of the covered work, -and which are not combined with it such as to form a larger program, -in or on a volume of a storage or distribution medium, is called an -"aggregate" if the compilation and its resulting copyright are not -used to limit the access or legal rights of the compilation's users -beyond what the individual works permit. Inclusion of a covered work -in an aggregate does not cause this License to apply to the other -parts of the aggregate. - - 6. Conveying Non-Source Forms. - - You may convey a covered work in object code form under the terms -of sections 4 and 5, provided that you also convey the -machine-readable Corresponding Source under the terms of this License, -in one of these ways: - - a) Convey the object code in, or embodied in, a physical product - (including a physical distribution medium), accompanied by the - Corresponding Source fixed on a durable physical medium - customarily used for software interchange. - - b) Convey the object code in, or embodied in, a physical product - (including a physical distribution medium), accompanied by a - written offer, valid for at least three years and valid for as - long as you offer spare parts or customer support for that product - model, to give anyone who possesses the object code either (1) a - copy of the Corresponding Source for all the software in the - product that is covered by this License, on a durable physical - medium customarily used for software interchange, for a price no - more than your reasonable cost of physically performing this - conveying of source, or (2) access to copy the - Corresponding Source from a network server at no charge. - - c) Convey individual copies of the object code with a copy of the - written offer to provide the Corresponding Source. This - alternative is allowed only occasionally and noncommercially, and - only if you received the object code with such an offer, in accord - with subsection 6b. - - d) Convey the object code by offering access from a designated - place (gratis or for a charge), and offer equivalent access to the - Corresponding Source in the same way through the same place at no - further charge. You need not require recipients to copy the - Corresponding Source along with the object code. If the place to - copy the object code is a network server, the Corresponding Source - may be on a different server (operated by you or a third party) - that supports equivalent copying facilities, provided you maintain - clear directions next to the object code saying where to find the - Corresponding Source. Regardless of what server hosts the - Corresponding Source, you remain obligated to ensure that it is - available for as long as needed to satisfy these requirements. - - e) Convey the object code using peer-to-peer transmission, provided - you inform other peers where the object code and Corresponding - Source of the work are being offered to the general public at no - charge under subsection 6d. - - A separable portion of the object code, whose source code is excluded -from the Corresponding Source as a System Library, need not be -included in conveying the object code work. - - A "User Product" is either (1) a "consumer product", which means any -tangible personal property which is normally used for personal, family, -or household purposes, or (2) anything designed or sold for incorporation -into a dwelling. In determining whether a product is a consumer product, -doubtful cases shall be resolved in favor of coverage. For a particular -product received by a particular user, "normally used" refers to a -typical or common use of that class of product, regardless of the status -of the particular user or of the way in which the particular user -actually uses, or expects or is expected to use, the product. A product -is a consumer product regardless of whether the product has substantial -commercial, industrial or non-consumer uses, unless such uses represent -the only significant mode of use of the product. - - "Installation Information" for a User Product means any methods, -procedures, authorization keys, or other information required to install -and execute modified versions of a covered work in that User Product from -a modified version of its Corresponding Source. The information must -suffice to ensure that the continued functioning of the modified object -code is in no case prevented or interfered with solely because -modification has been made. - - If you convey an object code work under this section in, or with, or -specifically for use in, a User Product, and the conveying occurs as -part of a transaction in which the right of possession and use of the -User Product is transferred to the recipient in perpetuity or for a -fixed term (regardless of how the transaction is characterized), the -Corresponding Source conveyed under this section must be accompanied -by the Installation Information. But this requirement does not apply -if neither you nor any third party retains the ability to install -modified object code on the User Product (for example, the work has -been installed in ROM). - - The requirement to provide Installation Information does not include a -requirement to continue to provide support service, warranty, or updates -for a work that has been modified or installed by the recipient, or for -the User Product in which it has been modified or installed. Access to a -network may be denied when the modification itself materially and -adversely affects the operation of the network or violates the rules and -protocols for communication across the network. - - Corresponding Source conveyed, and Installation Information provided, -in accord with this section must be in a format that is publicly -documented (and with an implementation available to the public in -source code form), and must require no special password or key for -unpacking, reading or copying. - - 7. Additional Terms. - - "Additional permissions" are terms that supplement the terms of this -License by making exceptions from one or more of its conditions. -Additional permissions that are applicable to the entire Program shall -be treated as though they were included in this License, to the extent -that they are valid under applicable law. If additional permissions -apply only to part of the Program, that part may be used separately -under those permissions, but the entire Program remains governed by -this License without regard to the additional permissions. - - When you convey a copy of a covered work, you may at your option -remove any additional permissions from that copy, or from any part of -it. (Additional permissions may be written to require their own -removal in certain cases when you modify the work.) You may place -additional permissions on material, added by you to a covered work, -for which you have or can give appropriate copyright permission. - - Notwithstanding any other provision of this License, for material you -add to a covered work, you may (if authorized by the copyright holders of -that material) supplement the terms of this License with terms: - - a) Disclaiming warranty or limiting liability differently from the - terms of sections 15 and 16 of this License; or - - b) Requiring preservation of specified reasonable legal notices or - author attributions in that material or in the Appropriate Legal - Notices displayed by works containing it; or - - c) Prohibiting misrepresentation of the origin of that material, or - requiring that modified versions of such material be marked in - reasonable ways as different from the original version; or - - d) Limiting the use for publicity purposes of names of licensors or - authors of the material; or - - e) Declining to grant rights under trademark law for use of some - trade names, trademarks, or service marks; or - - f) Requiring indemnification of licensors and authors of that - material by anyone who conveys the material (or modified versions of - it) with contractual assumptions of liability to the recipient, for - any liability that these contractual assumptions directly impose on - those licensors and authors. - - All other non-permissive additional terms are considered "further -restrictions" within the meaning of section 10. If the Program as you -received it, or any part of it, contains a notice stating that it is -governed by this License along with a term that is a further -restriction, you may remove that term. If a license document contains -a further restriction but permits relicensing or conveying under this -License, you may add to a covered work material governed by the terms -of that license document, provided that the further restriction does -not survive such relicensing or conveying. - - If you add terms to a covered work in accord with this section, you -must place, in the relevant source files, a statement of the -additional terms that apply to those files, or a notice indicating -where to find the applicable terms. - - Additional terms, permissive or non-permissive, may be stated in the -form of a separately written license, or stated as exceptions; -the above requirements apply either way. - - 8. Termination. - - You may not propagate or modify a covered work except as expressly -provided under this License. Any attempt otherwise to propagate or -modify it is void, and will automatically terminate your rights under -this License (including any patent licenses granted under the third -paragraph of section 11). - - However, if you cease all violation of this License, then your -license from a particular copyright holder is reinstated (a) -provisionally, unless and until the copyright holder explicitly and -finally terminates your license, and (b) permanently, if the copyright -holder fails to notify you of the violation by some reasonable means -prior to 60 days after the cessation. - - Moreover, your license from a particular copyright holder is -reinstated permanently if the copyright holder notifies you of the -violation by some reasonable means, this is the first time you have -received notice of violation of this License (for any work) from that -copyright holder, and you cure the violation prior to 30 days after -your receipt of the notice. - - Termination of your rights under this section does not terminate the -licenses of parties who have received copies or rights from you under -this License. If your rights have been terminated and not permanently -reinstated, you do not qualify to receive new licenses for the same -material under section 10. - - 9. Acceptance Not Required for Having Copies. - - You are not required to accept this License in order to receive or -run a copy of the Program. Ancillary propagation of a covered work -occurring solely as a consequence of using peer-to-peer transmission -to receive a copy likewise does not require acceptance. However, -nothing other than this License grants you permission to propagate or -modify any covered work. These actions infringe copyright if you do -not accept this License. Therefore, by modifying or propagating a -covered work, you indicate your acceptance of this License to do so. - - 10. Automatic Licensing of Downstream Recipients. - - Each time you convey a covered work, the recipient automatically -receives a license from the original licensors, to run, modify and -propagate that work, subject to this License. You are not responsible -for enforcing compliance by third parties with this License. - - An "entity transaction" is a transaction transferring control of an -organization, or substantially all assets of one, or subdividing an -organization, or merging organizations. If propagation of a covered -work results from an entity transaction, each party to that -transaction who receives a copy of the work also receives whatever -licenses to the work the party's predecessor in interest had or could -give under the previous paragraph, plus a right to possession of the -Corresponding Source of the work from the predecessor in interest, if -the predecessor has it or can get it with reasonable efforts. - - You may not impose any further restrictions on the exercise of the -rights granted or affirmed under this License. For example, you may -not impose a license fee, royalty, or other charge for exercise of -rights granted under this License, and you may not initiate litigation -(including a cross-claim or counterclaim in a lawsuit) alleging that -any patent claim is infringed by making, using, selling, offering for -sale, or importing the Program or any portion of it. - - 11. Patents. - - A "contributor" is a copyright holder who authorizes use under this -License of the Program or a work on which the Program is based. The -work thus licensed is called the contributor's "contributor version". - - A contributor's "essential patent claims" are all patent claims -owned or controlled by the contributor, whether already acquired or -hereafter acquired, that would be infringed by some manner, permitted -by this License, of making, using, or selling its contributor version, -but do not include claims that would be infringed only as a -consequence of further modification of the contributor version. For -purposes of this definition, "control" includes the right to grant -patent sublicenses in a manner consistent with the requirements of -this License. - - Each contributor grants you a non-exclusive, worldwide, royalty-free -patent license under the contributor's essential patent claims, to -make, use, sell, offer for sale, import and otherwise run, modify and -propagate the contents of its contributor version. - - In the following three paragraphs, a "patent license" is any express -agreement or commitment, however denominated, not to enforce a patent -(such as an express permission to practice a patent or covenant not to -sue for patent infringement). To "grant" such a patent license to a -party means to make such an agreement or commitment not to enforce a -patent against the party. - - If you convey a covered work, knowingly relying on a patent license, -and the Corresponding Source of the work is not available for anyone -to copy, free of charge and under the terms of this License, through a -publicly available network server or other readily accessible means, -then you must either (1) cause the Corresponding Source to be so -available, or (2) arrange to deprive yourself of the benefit of the -patent license for this particular work, or (3) arrange, in a manner -consistent with the requirements of this License, to extend the patent -license to downstream recipients. "Knowingly relying" means you have -actual knowledge that, but for the patent license, your conveying the -covered work in a country, or your recipient's use of the covered work -in a country, would infringe one or more identifiable patents in that -country that you have reason to believe are valid. - - If, pursuant to or in connection with a single transaction or -arrangement, you convey, or propagate by procuring conveyance of, a -covered work, and grant a patent license to some of the parties -receiving the covered work authorizing them to use, propagate, modify -or convey a specific copy of the covered work, then the patent license -you grant is automatically extended to all recipients of the covered -work and works based on it. - - A patent license is "discriminatory" if it does not include within -the scope of its coverage, prohibits the exercise of, or is -conditioned on the non-exercise of one or more of the rights that are -specifically granted under this License. You may not convey a covered -work if you are a party to an arrangement with a third party that is -in the business of distributing software, under which you make payment -to the third party based on the extent of your activity of conveying -the work, and under which the third party grants, to any of the -parties who would receive the covered work from you, a discriminatory -patent license (a) in connection with copies of the covered work -conveyed by you (or copies made from those copies), or (b) primarily -for and in connection with specific products or compilations that -contain the covered work, unless you entered into that arrangement, -or that patent license was granted, prior to 28 March 2007. - - Nothing in this License shall be construed as excluding or limiting -any implied license or other defenses to infringement that may -otherwise be available to you under applicable patent law. - - 12. No Surrender of Others' Freedom. - - If conditions are imposed on you (whether by court order, agreement or -otherwise) that contradict the conditions of this License, they do not -excuse you from the conditions of this License. If you cannot convey a -covered work so as to satisfy simultaneously your obligations under this -License and any other pertinent obligations, then as a consequence you may -not convey it at all. For example, if you agree to terms that obligate you -to collect a royalty for further conveying from those to whom you convey -the Program, the only way you could satisfy both those terms and this -License would be to refrain entirely from conveying the Program. - - 13. Use with the GNU Affero General Public License. - - Notwithstanding any other provision of this License, you have -permission to link or combine any covered work with a work licensed -under version 3 of the GNU Affero General Public License into a single -combined work, and to convey the resulting work. The terms of this -License will continue to apply to the part which is the covered work, -but the special requirements of the GNU Affero General Public License, -section 13, concerning interaction through a network will apply to the -combination as such. - - 14. Revised Versions of this License. - - The Free Software Foundation may publish revised and/or new versions of -the GNU General Public License from time to time. Such new versions will -be similar in spirit to the present version, but may differ in detail to -address new problems or concerns. - - Each version is given a distinguishing version number. If the -Program specifies that a certain numbered version of the GNU General -Public License "or any later version" applies to it, you have the -option of following the terms and conditions either of that numbered -version or of any later version published by the Free Software -Foundation. If the Program does not specify a version number of the -GNU General Public License, you may choose any version ever published -by the Free Software Foundation. - - If the Program specifies that a proxy can decide which future -versions of the GNU General Public License can be used, that proxy's -public statement of acceptance of a version permanently authorizes you -to choose that version for the Program. - - Later license versions may give you additional or different -permissions. However, no additional obligations are imposed on any -author or copyright holder as a result of your choosing to follow a -later version. - - 15. Disclaimer of Warranty. - - THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY -APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT -HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY -OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, -THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR -PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM -IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF -ALL NECESSARY SERVICING, REPAIR OR CORRECTION. - - 16. Limitation of Liability. - - IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING -WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS -THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY -GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE -USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF -DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD -PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS), -EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF -SUCH DAMAGES. - - 17. Interpretation of Sections 15 and 16. - - If the disclaimer of warranty and limitation of liability provided -above cannot be given local legal effect according to their terms, -reviewing courts shall apply local law that most closely approximates -an absolute waiver of all civil liability in connection with the -Program, unless a warranty or assumption of liability accompanies a -copy of the Program in return for a fee. - - END OF TERMS AND CONDITIONS - - How to Apply These Terms to Your New Programs - - If you develop a new program, and you want it to be of the greatest -possible use to the public, the best way to achieve this is to make it -free software which everyone can redistribute and change under these terms. - - To do so, attach the following notices to the program. It is safest -to attach them to the start of each source file to most effectively -state the exclusion of warranty; and each file should have at least -the "copyright" line and a pointer to where the full notice is found. - - <one line to give the program's name and a brief idea of what it does.> - Copyright (C) <year> <name of author> - - This program is free software: you can redistribute it and/or modify - it under the terms of the GNU General Public License as published by - the Free Software Foundation, either version 3 of the License, or - (at your option) any later version. - - This program is distributed in the hope that it will be useful, - but WITHOUT ANY WARRANTY; without even the implied warranty of - MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the - GNU General Public License for more details. - - You should have received a copy of the GNU General Public License - along with this program. If not, see <http://www.gnu.org/licenses/>. - -Also add information on how to contact you by electronic and paper mail. - - If the program does terminal interaction, make it output a short -notice like this when it starts in an interactive mode: - - <program> Copyright (C) <year> <name of author> - This program comes with ABSOLUTELY NO WARRANTY; for details type `show w'. - This is free software, and you are welcome to redistribute it - under certain conditions; type `show c' for details. - -The hypothetical commands `show w' and `show c' should show the appropriate -parts of the General Public License. Of course, your program's commands -might be different; for a GUI interface, you would use an "about box". - - You should also get your employer (if you work as a programmer) or school, -if any, to sign a "copyright disclaimer" for the program, if necessary. -For more information on this, and how to apply and follow the GNU GPL, see -<http://www.gnu.org/licenses/>. - - The GNU General Public License does not permit incorporating your program -into proprietary programs. If your program is a subroutine library, you -may consider it more useful to permit linking proprietary applications with -the library. If this is what you want to do, use the GNU Lesser General -Public License instead of this License. But first, please read -<http://www.gnu.org/philosophy/why-not-lgpl.html>. diff --git a/openair1/SIMULATION/LTE_RECIPROCITY/Makefile b/openair1/SIMULATION/LTE_RECIPROCITY/Makefile deleted file mode 100644 index c47675fdadcb0d32ae3037f8804a359a8447b674..0000000000000000000000000000000000000000 --- a/openair1/SIMULATION/LTE_RECIPROCITY/Makefile +++ /dev/null @@ -1,113 +0,0 @@ -include $(OPENAIR_HOME)/common/utils/Makefile.inc - -TOP_DIR = $(OPENAIR1_DIR) -OPENAIR1_TOP = $(OPENAIR1_DIR) -OPENAIR2_TOP = $(OPENAIR2_DIR) -OPENAIR3 = $(OPENAIR3_DIR) - -CFLAGS += -m32 -DPHYSIM -DNODE_RG -DUSER_MODE -DPC_TARGET -DPC_DSP -DNB_ANTENNAS_RX=2 -DNB_ANTENNAS_TXRX=2 -DNB_ANTENNAS_TX=2 -DPHY_CONTEXT=1 - -LFLAGS = -lm -lblas - -CFLAGS += -DOPENAIR_LTE #-DOFDMA_ULSCH -DIFFT_FPGA -DIFFT_FPGA_UE -#CFLAGS += -DTBS_FIX -CFLAGS += -DCELLULAR - -ASN1_MSG_INC = $(OPENAIR2_DIR)/RRC/LITE/MESSAGES - -ifdef EMOS -CFLAGS += -DEMOS -endif - -ifdef DEBUG_PHY -CFLAGS += -DDEBUG_PHY -endif - -ifdef MeNBMUE -CFLAGS += -DMeNBMUE -endif - -ifdef MU_RECEIVER -CFLAGS += -DMU_RECEIVER -endif - -ifdef ZBF_ENABLED -CFLAGS += -DNULL_SHAPE_BF_ENABLED -endif - -ifdef RANDOM_BF -CFLAGS += -DRANDOM_BF -endif - -ifdef PBS_SIM -CFLAGS += -DPBS_SIM -endif - -ifdef XFORMS -CFLAGS += -DXFORMS -LFLAGS += -lforms -endif - -ifdef PERFECT_CE -CFLAGS += -DPERFECT_CE -endif - -CFLAGS += -DNO_RRM -DOPENAIR2 -DPHY_ABSTRACTION - -CFLAGS += -I/usr/include/X11 -I/usr/X11R6/include - - -include $(TOP_DIR)/PHY/Makefile.inc -SCHED_OBJS = $(TOP_DIR)/SCHED/phy_procedures_lte_common.o $(TOP_DIR)/SCHED/phy_procedures_lte_eNb.o $(TOP_DIR)/SCHED/phy_procedures_lte_ue.o -#include $(TOP_DIR)/SCHED/Makefile.inc -include $(TOP_DIR)/SIMULATION/Makefile.inc -include $(OPENAIR2_DIR)/LAYER2/Makefile.inc -include $(OPENAIR2_DIR)/RRC/LITE/MESSAGES/Makefile.inc - -CFLAGS += $(L2_incl) -I$(ASN1_MSG_INC) -I$(TOP_DIR) -I$(OPENAIR3) -EXTRA_CFLAGS = - -#STATS_OBJS += $(TOP_DIR)/ARCH/CBMIMO1/DEVICE_DRIVER/cbmimo1_proc.o - -#LAYER2_OBJ += $(OPENAIR2_DIR)/LAYER2/MAC/rar_tools.o -LAYER2_OBJ = $(OPENAIR2_DIR)/LAYER2/MAC/lte_transport_init.o - -OBJ = $(PHY_OBJS) $(SIMULATION_OBJS) $(TOOLS_OBJS) $(SCHED_OBJS) $(LAYER2_OBJ) #$(ASN1_MSG_OBJS) -#OBJ2 = $(PHY_OBJS) $(SIMULATION_OBJS) $(TOOLS_OBJS) - -ifdef XFORMS -OBJ += ../../USERSPACE_TOOLS/SCOPE/lte_scope.o -endif - -all: dlsim pbchsim pdcchsim ulsim pucchsim - -test: $(SIMULATION_OBJS) $(TOOLS_OBJS) $(TOP_DIR)/PHY/INIT/lte_init.o test.c - $(CC) test.c -I$(TOP_DIR) -o test $(CFLAGS) $(SIMULATION_OBJS) $(TOOLS_OBJS) -lm - -$(OBJ) : %.o : %.c - @echo - @echo Compiling $< ... - @$(CC) -c $(CFLAGS) -o $@ $< - -recsim : $(OBJ) recsim.c - @echo "Compiling recsim.c ..." - @$(CC) recsim.c -o recsim $(CFLAGS) $(OBJ) $(LFLAGS) #-static -L/usr/lib/libblas - -recsim_eNB2UE : $(OBJ) recsim_eNB2UE.c - @echo "Compiling recsim_eNB2UE.c ..." - @$(CC) recsim_eNB2UE.c -o recsim_eNB2UE $(CFLAGS) $(OBJ) $(LFLAGS) #-static -L/usr/lib/libblas - -recsim_eNBUE4 : $(OBJ) recsim_eNBUE4.c - @echo "Compiling recsim_eNBUE4.c ..." - @$(CC) recsim_eNBUE4.c -o recsim_eNBUE4 $(CFLAGS) $(OBJ) $(LFLAGS) #-static -L/usr/lib/libblas - -clean : - rm -f $(OBJ) - rm -f *.o - -cleanall : clean - rm -f dlsim pbchsim pdcchsim ulsim pucchsim - rm -f *.exe* - -showcflags : - @echo $(CFLAGS) diff --git a/openair1/SIMULATION/LTE_RECIPROCITY/coeffs.h b/openair1/SIMULATION/LTE_RECIPROCITY/coeffs.h deleted file mode 100644 index 0b97aa45192a41174808631cb5967993e6eee1c8..0000000000000000000000000000000000000000 --- a/openair1/SIMULATION/LTE_RECIPROCITY/coeffs.h +++ /dev/null @@ -1,51 +0,0 @@ -/******************************************************************************* - OpenAirInterface - Copyright(c) 1999 - 2014 Eurecom - - OpenAirInterface is free software: you can redistribute it and/or modify - it under the terms of the GNU General Public License as published by - the Free Software Foundation, either version 3 of the License, or - (at your option) any later version. - - - OpenAirInterface is distributed in the hope that it will be useful, - but WITHOUT ANY WARRANTY; without even the implied warranty of - MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the - GNU General Public License for more details. - - You should have received a copy of the GNU General Public License - along with OpenAirInterface.The full GNU General Public License is - included in this distribution in the file called "COPYING". If not, - see <http://www.gnu.org/licenses/>. - - Contact Information - OpenAirInterface Admin: openair_admin@eurecom.fr - OpenAirInterface Tech : openair_tech@eurecom.fr - OpenAirInterface Dev : openair4g-devel@eurecom.fr - - Address : Eurecom, Campus SophiaTech, 450 Route des Chappes, CS 50193 - 06904 Biot Sophia Antipolis cedex, FRANCE - - *******************************************************************************/ -double s_coeffs_eNB[11] = {-0.0031, 0.0131, -0.0101, -0.0843, 0.2630, 0.6428, 0.2630, -0.0843, -0.0101, 0.0131, -0.0031}; -int s_ord_fir_eNB = 11; - -double r_coeffs_eNB[6] = {-0.0098, 0.0104, 0.4995, 0.4995, 0.0104, -0.0098}; -int r_ord_fir_eNB = 6; - -double s_coeffs_UE[9] = {0.0062, -0.0054, -0.0661, 0.2471, 0.6365, 0.2471, -0.0661, -0.0054, 0.0062}; -int s_ord_fir_UE = 9; - -double r_coeffs_UE[8] = {0.0050, -0.0303, 0.0163, 0.5090, 0.5090, 0.0163, -0.0303, 0.0050}; -int r_ord_fir_UE = 8;/* - -double s_coeffs_eNB[2] = {1, 0}; -int s_ord_fir_eNB = 2; - -double r_coeffs_eNB[2] = {1, 0}; -int r_ord_fir_eNB = 2; - -double s_coeffs_UE[2] = {1, 0}; -int s_ord_fir_UE = 2; - -double r_coeffs_UE[2] = {1, 0}; -int r_ord_fir_UE = 2;*/ diff --git a/openair1/SIMULATION/LTE_RECIPROCITY/mat_code/basictls.m b/openair1/SIMULATION/LTE_RECIPROCITY/mat_code/basictls.m deleted file mode 100644 index 4c034e75e5d033d9d521e2657b7e042899cc9072..0000000000000000000000000000000000000000 --- a/openair1/SIMULATION/LTE_RECIPROCITY/mat_code/basictls.m +++ /dev/null @@ -1,29 +0,0 @@ -function[x]=basictls(A,B); - -%TLS de base voir Overview... -%[U D V]=svd([A B]); -%m=size(A,1);d=size(B,2);n=size(A,2); - -%Vdd=V((n+1):(n+d),(n+1):(n+d)); -%if det(Vdd)~=0 %non singular - % x=-V(1:size(A,2),(size(A,2)+1):(n+d)) * inv(Vdd); -% x=-V(1:n,(n+1):(n+d)) / Vdd; -%else -% fprintf('\n*******Pas de solution, matrice singuliere Vdd********\n') -%end - - px =[A B]' * [A B]; - ar=real(px(1,1)); - ai=imag(px(1,1)); - br=real(px(1,2)); - bi=imag(px(1,2)); - cr=real(px(2,1)); - ci=imag(px(2,1)); - dr=real(px(2,2)); - di=imag(px(2,2)); - - if((ar-dr+sqrt((ar-dr)*(ar-dr)+((br*br+bi*bi)*4)))~=0) - x=2*br/(ar-dr+sqrt((ar-dr)*(ar-dr)+((br*br+bi*bi)*4))) + 2i*bi/(ar-dr+sqrt((ar-dr)*(ar-dr)+((br*br+bi*bi)*4))); - else - x=0+1i*0; - end diff --git a/openair1/SIMULATION/LTE_RECIPROCITY/mat_code/compar1.m b/openair1/SIMULATION/LTE_RECIPROCITY/mat_code/compar1.m deleted file mode 100644 index ef8d0a0e03ce2725773039a1ab6e5ecc08adbc1f..0000000000000000000000000000000000000000 --- a/openair1/SIMULATION/LTE_RECIPROCITY/mat_code/compar1.m +++ /dev/null @@ -1,61 +0,0 @@ -close all;clear all; -vulb;cal1; -vdlb; -aue1; -aenb1; -figure(1),subplot(231),plot(real(vdl(1537:1836))) -title("dlchest et drschest") -subplot(232),plot(imag(vdl(1537:1836))) -subplot(233),plot(angle(vdl(1537:1836)),"m"); -subplot(234),plot(real(vul(901:1200)),"r") -subplot(235),plot(imag(vul(901:1200)),"r") -subplot(236),plot(angle(vul(901:1200)),"m") - -dec_f = 4; - -figure(2),subplot(231),plot(real(aenb(1:dec_f:300))) -title("dlchest et drschest avec doquant") -subplot(232),plot(imag(aenb(1:dec_f:300))) -subplot(233),plot(angle(aenb(1:dec_f:300)),"m"); -subplot(234),plot(real(aue(1:dec_f:300)),"r") -subplot(235),plot(imag(aue(1:dec_f:300)),"r") -subplot(236),plot(angle(aue(1:dec_f:300)),"m") - - - -figure(3),subplot(131),plot(real(cal(1:dec_f:300)),"g"); -title("facteur de calib") -subplot(132),plot(imag(cal(1:dec_f:300)),"g"); -subplot(133),plot(angle(cal(1:dec_f:300)),"g"); - -figure(4), -subplot(131),plot(real(cal(1:dec_f:300).*aue(1:dec_f:300)),"r") -title("dl reconstruit") -subplot(132),plot(imag(cal(1:dec_f:300).*aue(1:dec_f:300)),"r") -subplot(133),plot(angle(cal(1:dec_f:300).*aue(1:dec_f:300)),"r") - -%figure(5), - -break - -vdrs2;vdrs4;cal1; -vdl2;vdl4 -aue1; -aenb1; -figure(20),subplot(231),plot(real(vudl2(1:300))) -title("dlchest et drschest") -subplot(232),plot(imag(vudl2(1:300))) -subplot(233),plot(angle(vudl2(1:300)),"m"); -subplot(234),plot(real(vudrs2(1:300)),"r") -subplot(235),plot(imag(vudrs2(1:300)),"r") -subplot(236),plot(angle(vudrs2(1:300)),"m") - -figure(21),subplot(231),plot(real(vudl4(1:300))) -title("dlchest et drschest") -subplot(232),plot(imag(vudl4(1:300))) -subplot(233),plot(angle(vudl4(1:300)),"m"); -subplot(234),plot(real(vudrs4(1:300)),"r") -subplot(235),plot(imag(vudrs4(1:300)),"r") -subplot(236),plot(angle(vudrs4(1:300)),"m") - - diff --git a/openair1/SIMULATION/LTE_RECIPROCITY/mat_code/compar2.m b/openair1/SIMULATION/LTE_RECIPROCITY/mat_code/compar2.m deleted file mode 100644 index 65194881073023af8a1b9fbe6b80a067fd3dbdb6..0000000000000000000000000000000000000000 --- a/openair1/SIMULATION/LTE_RECIPROCITY/mat_code/compar2.m +++ /dev/null @@ -1,15 +0,0 @@ -close all;clear all; -vulb;cal1; -vdlb; -aue1; -aenb1; - -dec_f = 1; - -figure(1),subplot(131),plot(real(aenb(1:dec_f:300))), hold on, plot(real(cal(1:dec_f:300).*aue(1:dec_f:300)),"r") -title("dlchest") -subplot(132),plot(imag(aenb(1:dec_f:300))), hold on, plot(imag(cal(1:dec_f:300).*aue(1:dec_f:300)),"r") -subplot(133),plot(angle(aenb(1:dec_f:300))); hold on, plot(angle(cal(1:dec_f:300).*aue(1:dec_f:300)),"r") - -figure(2), plot(real(aenb(1:dec_f:300))), hold on, plot(real(aue(1:dec_f:300)),"r") -%figure(5), diff --git a/openair1/SIMULATION/LTE_RECIPROCITY/mat_code/compar_b.m b/openair1/SIMULATION/LTE_RECIPROCITY/mat_code/compar_b.m deleted file mode 100644 index 7c1b9ac305d0ff79adb2a0d1e18deada84876450..0000000000000000000000000000000000000000 --- a/openair1/SIMULATION/LTE_RECIPROCITY/mat_code/compar_b.m +++ /dev/null @@ -1,124 +0,0 @@ -% Comparaison Matlab FACTEUR P - -clear all -clc -K=10; -SC=300; -M=1;N=1; -H_h=zeros(N,M,300,K); -G_g=zeros(M,N,300,K); -Vis=zeros(SC,N,M,8); - -vudl0; -vudrs0; -vudl1; -vudrs1; -vudl2; -vudrs2; -vudl3; -vudrs3; -vudl4; -vudrs4; -vudl5; -vudrs5; -vudl6; -vudrs6; -vudl7; -vudrs7; -vudl8; -vudrs8; -vudl9; -vudrs9; -cal1; -vul1; -vdl1; - -for s_c=1:SC - for n_k=1:K - eval(['H_h(1,1,' int2str(s_c) ',' int2str(n_k) ')=vudrs' int2str(n_k-1) '(' int2str(s_c) ');']); - eval(['G_g(1,1,' int2str(s_c) ',' int2str(n_k) ')=vudl' int2str(n_k-1) '(' int2str(s_c) ');']); - end -end - -Psyst(1,1,:)=cal; - -for s_c=1:SC - - for ii= 1:N % nb antennes emission - for jj= 1:M % nb antennes reception - %if(max(abs(squeeze(H_h(ii,jj,s_c,1:K))))~=0 && max(abs(squeeze(G_g(jj,ii,s_c,1:K))))~=0) - Pud(ii,jj,s_c)=basictls(squeeze(H_h(ii,jj,s_c,1:K)),squeeze(G_g(jj,ii,s_c,1:K)) ); - - C=squeeze(H_h(ii,jj,s_c,1:K)); - D=squeeze(G_g(jj,ii,s_c,1:K)); - px =[C D]'*[C D]; - ar=real(px(1,1)); - ai=imag(px(1,1)); - br=real(px(1,2)); - bi=imag(px(1,2)); - dr=real(px(2,2)); - di=imag(px(2,2)); - r1=2*br/(ar-dr+sqrt((ar-dr)*(ar-dr)+((br*br+bi*bi)*4))); - r2=2*bi/(ar-dr+sqrt((ar-dr)*(ar-dr)+((br*br+bi*bi)*4))); - Vis(s_c,ii,jj,:)=[ar ai br bi dr di r1 r2 ]; - - end - end - -end - -figure,plot(abs(cal(1:300).*vul(901:1200))); -figure,plot(abs(vdl(1537:1836)),"r"); - -break -figure,plot(abs(cal(1:300).*aue(1:300))); -figure,plot(abs(aenb(1:300)),"r"); - -A=vul(1:300); -B=vdl(1:300); -figure,plot(abs(fft(ifft(A,512),300)),"b"); -figure,plot(abs(fft(ifft(B,512),300)),"b"); - - - -close all;clear all; -vul1;cal1; -vdl1; -aue1; -aenb1; -figure(1),subplot(231),plot(real(vdl(1537:1836))) -title("dlchest et drschest") -subplot(232),plot(imag(vdl(1537:1836))) -subplot(233),plot(angle(vdl(1537:1836)),"m"); -subplot(234),plot(real(vul(901:1200)),"r") -subplot(235),plot(imag(vul(901:1200)),"r") -subplot(236),plot(angle(vul(901:1200)),"m") - -dec_f = 4; - -figure(2),subplot(231),plot(real(aenb(1:dec_f:300))) -title("dlchest et drschest avec doquant") -subplot(232),plot(imag(aenb(1:dec_f:300))) -subplot(233),plot(angle(aenb(1:dec_f:300)),"m"); -subplot(234),plot(real(aue(1:dec_f:300)),"r") -subplot(235),plot(imag(aue(1:dec_f:300)),"r") -subplot(236),plot(angle(aue(1:dec_f:300)),"m") - - - -figure(3),subplot(131),plot(real(cal(1:dec_f:300)),"g"); -title("facteur de calib") -subplot(132),plot(imag(cal(1:dec_f:300)),"g"); -subplot(133),plot(angle(cal(1:dec_f:300)),"g"); - -figure(4), -subplot(131),plot(real(cal(1:dec_f:300).*aue(1:dec_f:300)),"r") -title("dl reconstruit") -subplot(132),plot(imag(cal(1:dec_f:300).*aue(1:dec_f:300)),"r") -subplot(133),plot(angle(cal(1:dec_f:300).*aue(1:dec_f:300)),"r") - -%figure(5), -%title("Dif dlchest et dlcal") -norm(vdl(1537:1836)-(cal(1:300).*aue(1:300)),2) - - diff --git a/openair1/SIMULATION/LTE_RECIPROCITY/mat_code/compar_b1.m b/openair1/SIMULATION/LTE_RECIPROCITY/mat_code/compar_b1.m deleted file mode 100644 index 00d88d50d7bfffd3a7e7d953e326c24c4f312cf8..0000000000000000000000000000000000000000 --- a/openair1/SIMULATION/LTE_RECIPROCITY/mat_code/compar_b1.m +++ /dev/null @@ -1,109 +0,0 @@ -% Comparaison Matlab FACTEUR P - -clear all -clc -K=10; -SC=300; -M=1;N=1; -H_h=zeros(N,M,300,K); -G_g=zeros(M,N,300,K); -Vis=zeros(SC,N,M,8); - -vudl0; -vudrs0; -vudl1; -vudrs1; -vudl2; -vudrs2; -vudl3; -vudrs3; -vudl4; -vudrs4; -vudl5; -vudrs5; -vudl6; -vudrs6; -vudl7; -vudrs7; -vudl8; -vudrs8; -vudl9; -vudrs9; -cal1; -vul1; -vdl1; - -for s_c=1:SC - for n_k=1:K - eval(['H_h(1,1,' int2str(s_c) ',' int2str(n_k) ')=vudrs' int2str(n_k-1) '(' int2str(s_c) ');']); - eval(['G_g(1,1,' int2str(s_c) ',' int2str(n_k) ')=vudl' int2str(n_k-1) '(' int2str(s_c) ');']); - end -end - -Psyst(1,1,:)=cal; - -for s_c=1:SC - - for ii= 1:N % nb antennes emission - for jj= 1:M % nb antennes reception - %if(max(abs(squeeze(H_h(ii,jj,s_c,1:K))))~=0 && max(abs(squeeze(G_g(jj,ii,s_c,1:K))))~=0) - Pud(ii,jj,s_c)=basictls(squeeze(H_h(ii,jj,s_c,1:K)),squeeze(G_g(jj,ii,s_c,1:K)) ); - - C=squeeze(H_h(ii,jj,s_c,1:K)); - D=squeeze(G_g(jj,ii,s_c,1:K)); - px =[C D]'*[C D]; - ar=real(px(1,1)); - ai=imag(px(1,1)); - br=real(px(1,2)); - bi=imag(px(1,2)); - dr=real(px(2,2)); - di=imag(px(2,2)); - r1=2*br/(ar-dr+sqrt((ar-dr)*(ar-dr)+((br*br+bi*bi)*4))); - r2=2*bi/(ar-dr+sqrt((ar-dr)*(ar-dr)+((br*br+bi*bi)*4))); - Vis(s_c,ii,jj,:)=[ar ai br bi dr di r1 r2 ]; - - end - end - -end - -figure,plot(abs(cal(1:300).*vul(901:1200))); -figure,plot(abs(vdl(1537:1836)),"r"); - -break -figure,plot(abs(cal(1:300).*aue(1:300))); -figure,plot(abs(aenb(1:300)),"r"); - -A=vul(1:300); -B=vdl(1:300); -figure,plot(abs(fft(ifft(A,512),300)),"b"); -figure,plot(abs(fft(ifft(B,512),300)),"b"); - - - -close all;clear all; -vul1; -vdl1; -aue1; -aenb1; -figure(1),subplot(231),plot(real(vdl(1537:1836))) -subplot(232),plot(imag(vdl(1537:1836))) -subplot(233),plot(angle(vdl(1537:1836)),"m"); -subplot(234),plot(real(vul(901:1200)),"r") -subplot(235),plot(imag(vul(901:1200)),"r") -subplot(236),plot(angle(vul(901:1200)),"m") - - -figure(2),subplot(231),plot(real(aenb(1:300))) -subplot(232),plot(imag(aenb(1:300))) -subplot(233),plot(angle(aenb(1:300)),"m"); -subplot(234),plot(real(aue(1:300)),"r") -subplot(235),plot(imag(aue(1:300)),"r") -subplot(236),plot(angle(aue(1:300)),"m") - - -cal1; -figure,plot(real(cal(1:300)),"m"); -figure,plot(imag(cal(1:300)),"m"); -figure,plot(angle(cal(1:300)),"m"); - diff --git a/openair1/SIMULATION/LTE_RECIPROCITY/mat_code/verifc.m b/openair1/SIMULATION/LTE_RECIPROCITY/mat_code/verifc.m deleted file mode 100644 index 489033803d29075d87d9c70ed8f3993328337951..0000000000000000000000000000000000000000 --- a/openair1/SIMULATION/LTE_RECIPROCITY/mat_code/verifc.m +++ /dev/null @@ -1,21 +0,0 @@ -%% Verif Calibration -close all, clear all; -run("./LTE_RECIPROCITY/aue1.m"); -run("./LTE_RECIPROCITY/aenb1.m"); -run("./LTE_RECIPROCITY/cal1.m"); -run("./LTE_RECIPROCITY/vul1.m"); -run("./LTE_RECIPROCITY/vdl1.m"); - - - -ul=vul(901:1200); -dl=vdl(1537:1836); - -dl_est=cal(1:300).*ul; - -res=abs(dl)-abs(dl_est); - -%plot(res); -figure();plot(abs(dl(50:150)),"g"),figure,plot(abs(ul(50:150)),"r"); -figure,plot(abs(cal(50:150)),"r"); -%figure(),plot(abs(ul),"m"); diff --git a/openair1/SIMULATION/LTE_RECIPROCITY/recsim.c b/openair1/SIMULATION/LTE_RECIPROCITY/recsim.c deleted file mode 100644 index 1f496d77f991bb25d72626329db7181614799269..0000000000000000000000000000000000000000 --- a/openair1/SIMULATION/LTE_RECIPROCITY/recsim.c +++ /dev/null @@ -1,3223 +0,0 @@ -/******************************************************************************* - OpenAirInterface - Copyright(c) 1999 - 2014 Eurecom - - OpenAirInterface is free software: you can redistribute it and/or modify - it under the terms of the GNU General Public License as published by - the Free Software Foundation, either version 3 of the License, or - (at your option) any later version. - - - OpenAirInterface is distributed in the hope that it will be useful, - but WITHOUT ANY WARRANTY; without even the implied warranty of - MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the - GNU General Public License for more details. - - You should have received a copy of the GNU General Public License - along with OpenAirInterface.The full GNU General Public License is - included in this distribution in the file called "COPYING". If not, - see <http://www.gnu.org/licenses/>. - - Contact Information - OpenAirInterface Admin: openair_admin@eurecom.fr - OpenAirInterface Tech : openair_tech@eurecom.fr - OpenAirInterface Dev : openair4g-devel@eurecom.fr - - Address : Eurecom, Campus SophiaTech, 450 Route des Chappes, CS 50193 - 06904 Biot Sophia Antipolis cedex, FRANCE - - *******************************************************************************/ -#include <string.h> -#include <math.h> -#include <unistd.h> -#include <execinfo.h> -#include <signal.h> - -#include "SIMULATION/TOOLS/defs.h" -#include "PHY/types.h" -#include "PHY/defs.h" -#include "PHY/vars.h" -#include "MAC_INTERFACE/vars.h" -#ifdef IFFT_FPGA -#include "PHY/LTE_REFSIG/mod_table.h" -#endif - -#include "ARCH/CBMIMO1/DEVICE_DRIVER/vars.h" -#include "SCHED/defs.h" -#include "SCHED/vars.h" -#include "LAYER2/MAC/vars.h" - -#include "OCG_vars.h" - -#include "coeffs.h" - -#ifdef XFORMS -#include "forms.h" -#include "../../USERSPACE_TOOLS/SCOPE/lte_scope.h" -#endif - -//#define AWGN -//#define NO_DCI - -#define BW 7.68 - -//modif start UL -channel_desc_t *UE2eNB[NUMBER_OF_UE_MAX][NUMBER_OF_eNB_MAX]; -extern uint16_t beta_ack[16],beta_ri[16],beta_cqi[16]; -extern unsigned short dftsizes[33]; -extern short *ul_ref_sigs[30][2][33]; -//modif end UL - -PHY_VARS_eNB *PHY_vars_eNB; -PHY_VARS_UE *PHY_vars_UE; - -void handler(int sig) -{ - void *array[10]; - size_t size; - - // get void*'s for all entries on the stack - size = backtrace(array, 10); - - // print out all the frames to stderr - fprintf(stderr, "Error: signal %d:\n", sig); - backtrace_symbols_fd(array, size, 2); - exit(1); -} - - -#ifdef XFORMS -void do_forms(FD_lte_scope *form, LTE_DL_FRAME_PARMS *frame_parms, short **channel, short **channel_f, short **rx_sig, short **rx_sig_f, short *dlsch_comp, short* dlsch_comp_i, short* dlsch_rho, - short *dlsch_llr, int coded_bits_per_codeword) -{ - - int i,j,ind,k,s; - - float Re,Im; - float mag_sig[NB_ANTENNAS_RX*4*NUMBER_OF_OFDM_CARRIERS*NUMBER_OF_OFDM_SYMBOLS_PER_SLOT], - sig_time[NB_ANTENNAS_RX*4*NUMBER_OF_OFDM_CARRIERS*NUMBER_OF_OFDM_SYMBOLS_PER_SLOT], - sig2[FRAME_LENGTH_COMPLEX_SAMPLES], - time2[FRAME_LENGTH_COMPLEX_SAMPLES], - I[25*12*11*4], Q[25*12*11*4], - *llr,*llr_time; - - float avg, cum_avg; - - llr = malloc(coded_bits_per_codeword*sizeof(float)); - llr_time = malloc(coded_bits_per_codeword*sizeof(float)); - - // Channel frequency response - cum_avg = 0; - ind = 0; - - for (j=0; j<4; j++) { - for (i=0; i<frame_parms->nb_antennas_rx; i++) { - for (k=0; k<NUMBER_OF_OFDM_CARRIERS*7; k++) { - sig_time[ind] = (float)ind; - Re = (float)(channel_f[(j<<1)+i][2*k]); - Im = (float)(channel_f[(j<<1)+i][2*k+1]); - //mag_sig[ind] = (short) rand(); - mag_sig[ind] = (short)10*log10(1.0+((double)Re*Re + (double)Im*Im)); - cum_avg += (short)sqrt((double)Re*Re + (double)Im*Im) ; - ind++; - } - - // ind+=NUMBER_OF_OFDM_CARRIERS/4; // spacing for visualization - } - } - - avg = cum_avg/NUMBER_OF_USEFUL_CARRIERS; - - //fl_set_xyplot_ybounds(form->channel_f,30,70); - fl_set_xyplot_data(form->channel_f,sig_time,mag_sig,ind,"","",""); - - - - // channel_t_re = rx_sig_f[0] - //for (i=0; i<FRAME_LENGTH_COMPLEX_SAMPLES_NO_PREFIX; i++) { - for (i=0; i<NUMBER_OF_OFDM_CARRIERS*frame_parms->symbols_per_tti/2; i++) { - sig2[i] = 10*log10(1.0+(double) ((rx_sig_f[0][4*i])*(rx_sig_f[0][4*i])+(rx_sig_f[0][4*i+1])*(rx_sig_f[0][4*i+1]))); - time2[i] = (float) i; - } - - //fl_set_xyplot_ybounds(form->channel_t_re,10,90); - fl_set_xyplot_data(form->channel_t_re,time2,sig2,NUMBER_OF_OFDM_CARRIERS*frame_parms->symbols_per_tti,"","",""); - //fl_set_xyplot_data(form->channel_t_re,time2,sig2,FRAME_LENGTH_COMPLEX_SAMPLES_NO_PREFIX,"","",""); - - - // channel_t_im = rx_sig[0] - - for (i=0; i<FRAME_LENGTH_COMPLEX_SAMPLES; i++) { - sig2[i] = 10*log10(1.0+(double) ((rx_sig[0][2*i])*(rx_sig[0][2*i])+(rx_sig[0][2*i+1])*(rx_sig[0][2*i+1]))); - time2[i] = (float) i; - } - - //fl_set_xyplot_ybounds(form->channel_t_im,0,100); - //fl_set_xyplot_data(form->channel_t_im,&time2[640*12*6],&sig2[640*12*6],640*12,"","",""); - fl_set_xyplot_data(form->channel_t_im,time2,sig2,FRAME_LENGTH_COMPLEX_SAMPLES,"","",""); - //} - - - // DLSCH LLR - for(i=0; i<coded_bits_per_codeword; i++) { - llr[i] = (float) dlsch_llr[i]; - llr_time[i] = (float) i; - } - - fl_set_xyplot_data(form->demod_out,llr_time,llr,coded_bits_per_codeword,"","",""); - fl_set_xyplot_ybounds(form->demod_out,-1000,1000); - - // DLSCH I/Q - j=0; - - for (s=0; s<frame_parms->symbols_per_tti; s++) { - for(i=0; i<12*25; i++) { - I[j] = dlsch_comp[(2*25*12*s)+2*i]; - Q[j] = dlsch_comp[(2*25*12*s)+2*i+1]; - j++; - } - - //if (s==2) - // s=3; - //else if (s==5) - // s=6; - //else if (s==8) - // s=9; - } - - fl_set_xyplot_data(form->scatter_plot,I,Q,j,"","",""); - fl_set_xyplot_xbounds(form->scatter_plot,-2000,2000); - fl_set_xyplot_ybounds(form->scatter_plot,-2000,2000); - - // DLSCH I/Q - j=0; - - for (s=0; s<frame_parms->symbols_per_tti; s++) { - for(i=0; i<12*25; i++) { - I[j] = dlsch_comp_i[(2*25*12*s)+2*i]; - Q[j] = dlsch_comp_i[(2*25*12*s)+2*i+1]; - j++; - } - - } - - fl_set_xyplot_data(form->scatter_plot1,I,Q,j,"","",""); - fl_set_xyplot_xbounds(form->scatter_plot1,-2000,2000); - fl_set_xyplot_ybounds(form->scatter_plot1,-2000,2000); - - // DLSCH I/Q - j=0; - - for (s=0; s<frame_parms->symbols_per_tti; s++) { - for(i=0; i<12*25; i++) { - I[j] = dlsch_rho[(2*25*12*s)+2*i]; - Q[j] = dlsch_rho[(2*25*12*s)+2*i+1]; - j++; - } - - } - - fl_set_xyplot_data(form->scatter_plot2,I,Q,j,"","",""); - - free(llr); - free(llr_time); - -} -#endif - -void lte_param_init(unsigned char N_tx, unsigned char N_rx,unsigned char transmission_mode,uint8_t extended_prefix_flag,uint16_t Nid_cell,uint8_t tdd_config,uint8_t N_RB_DL,uint8_t osf) -{ - - LTE_DL_FRAME_PARMS *lte_frame_parms; - int i; - - printf("Start lte_param_init\n"); - PHY_vars_eNB = malloc(sizeof(PHY_VARS_eNB)); - PHY_vars_UE = malloc(sizeof(PHY_VARS_UE)); - //PHY_config = malloc(sizeof(PHY_CONFIG)); - mac_xface = malloc(sizeof(MAC_xface)); - - randominit(0); - set_taus_seed(0); - - lte_frame_parms = &(PHY_vars_eNB->lte_frame_parms); - - lte_frame_parms->N_RB_DL = N_RB_DL; //50 for 10MHz and 25 for 5 MHz - lte_frame_parms->N_RB_UL = N_RB_DL; - lte_frame_parms->Ncp = extended_prefix_flag; - lte_frame_parms->Nid_cell = Nid_cell; - lte_frame_parms->nushift = 0; - lte_frame_parms->nb_antennas_tx = N_tx; - lte_frame_parms->nb_antennas_rx = N_rx; - lte_frame_parms->phich_config_common.phich_resource = oneSixth; - lte_frame_parms->tdd_config = tdd_config; - lte_frame_parms->frame_type = 1; - // lte_frame_parms->Csrs = 2; - // lte_frame_parms->Bsrs = 0; - // lte_frame_parms->kTC = 0;44 - // lte_frame_parms->n_RRC = 0; - lte_frame_parms->mode1_flag = (transmission_mode == 1)? 1 : 0; - - init_frame_parms(lte_frame_parms,osf); - - //copy_lte_parms_to_phy_framing(lte_frame_parms, &(PHY_config->PHY_framing)); - - phy_init_top(lte_frame_parms); //allocation - - lte_frame_parms->twiddle_fft = twiddle_fft; - lte_frame_parms->twiddle_ifft = twiddle_ifft; - lte_frame_parms->rev = rev; - - PHY_vars_UE->is_secondary_ue = 0; - PHY_vars_UE->lte_frame_parms = *lte_frame_parms; - PHY_vars_eNB->lte_frame_parms = *lte_frame_parms; - - phy_init_lte_top(lte_frame_parms); - dump_frame_parms(lte_frame_parms); - - for (i=0; i<3; i++) - lte_gold(lte_frame_parms,PHY_vars_UE->lte_gold_table[i],i); - - phy_init_lte_ue(&PHY_vars_UE->lte_frame_parms, - &PHY_vars_UE->lte_ue_common_vars, - PHY_vars_UE->lte_ue_dlsch_vars, - PHY_vars_UE->lte_ue_dlsch_vars_SI, - PHY_vars_UE->lte_ue_dlsch_vars_ra, - PHY_vars_UE->lte_ue_pbch_vars, - PHY_vars_UE->lte_ue_pdcch_vars, - PHY_vars_UE,0); - - phy_init_lte_eNB(&PHY_vars_eNB->lte_frame_parms, - &PHY_vars_eNB->lte_eNB_common_vars, - PHY_vars_eNB->lte_eNB_ulsch_vars, - 0, - PHY_vars_eNB, - 1, - 0); - - - printf("Done lte_param_init\n"); - - -} - -void do_bin(short *dl_ch_estimates, int dl_ch_estimates_length, unsigned char *input_buffer_UE, int dec_f) -{ - int l,k; - short temp; - short temp1; - - int ind = 0; - - for (l=0; l<dl_ch_estimates_length; l++) { - if (dl_ch_estimates[l]>0) { - input_buffer_UE[ind] = 0; - temp1 = dl_ch_estimates[l]; - } else { - input_buffer_UE[ind] = 1; - temp1 = (-1)*dl_ch_estimates[l]; - } - - ind+=7; - - for (k=0; k<7; k++) { - temp = temp1%2; - input_buffer_UE[ind-k] = (char)temp; - temp1 = temp1/2; - } - - ind++; - } -} - - -/*void do_decalibration(short *input_RF, short *output_RF, int filter_length) -{ - int nn,mm; - //FIR in time domain IFFT? - //y(n) = b(1)*x(n) + b(2)*x(n-1) + ... + b(nb+1)*x(n-nb) - // - a(2)*y(n-1) - ... - a(na+1)*y(n-na) - //b[0]=; - for (nn=0; nn<filter_length; nn++) { - for (mm=0; mm < K ; mm++) { - output_RF[nn] =+ b[mm]*input_RF[nn-mm]; - } - - } - }*/ - -// Apply phase offsets -void phase_offsets(double *re_in, double *im_in, double *re_out, double *im_out, int length_sig, double *phase_in, double phase_inc, int pos_neg) -{ - - int k; - double tmp_re,tmp_im; - double phase; - - for (k=0; k<length_sig; k++) { - re_out[k] = 0; - im_out[k] = 0; - } - - phase = *phase_in; - - for (k=0; k<length_sig; k++) { - tmp_re = re_in[k]*cos(phase) - pos_neg*im_in[k]*sin(phase); - tmp_im = pos_neg*re_in[k]*sin(phase) + im_in[k]*cos(phase); - - re_out[k] = tmp_re; - im_out[k] = tmp_im; - - phase += phase_inc; - } - - *phase_in = phase; -} - - -void real_fir(double *re_in, double *im_in, double *re_out, double *im_out, double *coeffs, int ord_fir, int length_sig) -{ - int k, l; - double temp1, temp2; - - for (k=0; k<length_sig; k++) { - re_out[k] = 0; - im_out[k] = 0; - } - - for (k=ord_fir; k<length_sig; k++) { - temp1 = 0; - temp2 = 0; - - for (l=0; l<ord_fir; l++) { - temp1 += coeffs[l]*re_in[k-l-1]; - temp2 += coeffs[l]*im_in[k-l-1]; - } - - re_out[k] = temp1; - im_out[k] = temp2; - } -} - - -// Modif Channel quantization at UE -void do_quantization(PHY_VARS_UE *PHY_vars_UE, unsigned int nsymb, uint8_t pilot1, int quant_v, short *dl_ch_estimates, int eNB_id, int dec_f) -{ - int k; - short tx_energy[4]; - short dl_ch_estimates_norm[4][PHY_vars_UE->lte_frame_parms.ofdm_symbol_size*nsymb]; - short dl_ch_estimates_norm_short[PHY_vars_UE->lte_frame_parms.ofdm_symbol_size*nsymb]; - - //tx_energy[0] = signal_energy(&(PHY_vars_UE->lte_ue_common_vars.dl_ch_estimates[eNB_id][0][0]),PHY_vars_UE->lte_frame_parms.ofdm_symbol_size*nsymb); - for(k=0; k<4; k++) - tx_energy[k] = 8; - - /* - for (k=0; k<PHY_vars_UE->lte_frame_parms.ofdm_symbol_size*nsymb; k+=2) - tx_energy[0]+= ((short *)PHY_vars_UE->lte_ue_common_vars.dl_ch_estimates[0][0])[k]*((short *)PHY_vars_UE->lte_ue_common_vars.dl_ch_estimates[0][0])[k] + ((short *)PHY_vars_UE->lte_ue_common_vars.dl_ch_estimates[0][0])[k+1]*((short *)PHY_vars_UE->lte_ue_common_vars.dl_ch_estimates[0][0])[k+1]; - */ - //printf("tx_energy[%d] = %d\n",0,tx_energy[0]); - for (k=0; k<PHY_vars_UE->lte_frame_parms.ofdm_symbol_size*nsymb; k++) { - dl_ch_estimates_norm[0][k] = ((short *)PHY_vars_UE->lte_ue_common_vars.dl_ch_estimates[0][0])[k]/tx_energy[0]; - //printf("dl_ch_estimates[%d] = %d , %d\n",k,PHY_vars_UE->lte_ue_common_vars.dl_ch_estimates[eNB_id][0][k],dl_ch_estimates_norm[0][k]); - } - - //write_output("txsig_11.m","txs_11", dl_ch_estimates_norm[0],PHY_vars_UE->lte_frame_parms.ofdm_symbol_size*nsymb,1,0); - //exit(-1); - - for (k=0; k<PHY_vars_UE->lte_frame_parms.ofdm_symbol_size*nsymb; k++) - dl_ch_estimates_norm_short[k] = dl_ch_estimates_norm[0][k]; - - for (k=pilot1*2*512; k<pilot1*2*512+2*300-1; k+=(2*dec_f)) { - if (dl_ch_estimates_norm_short[k]>(quant_v-1)) - dl_ch_estimates[k-pilot1*2*512] = quant_v-1; - else if (dl_ch_estimates_norm_short[k]< (-quant_v)) - dl_ch_estimates[k-pilot1*2*512] = -quant_v; - else - dl_ch_estimates[k-pilot1*2*512] = dl_ch_estimates_norm_short[k]; - - if (dl_ch_estimates_norm_short[k+1]>(quant_v-1)) - dl_ch_estimates[k+1-pilot1*2*512] = quant_v-1; - else if (dl_ch_estimates_norm_short[k+1]< (-quant_v)) - dl_ch_estimates[k+1-pilot1*2*512] = -quant_v; - else - dl_ch_estimates[k+1-pilot1*2*512] = dl_ch_estimates_norm_short[k+1]; - } - - if (PHY_vars_eNB->lte_frame_parms.nb_antennas_tx>1) { - //tx_energy[2]=signal_energy(&(PHY_vars_UE->lte_ue_common_vars.dl_ch_estimates[eNB_id][2][0]),PHY_vars_UE->lte_frame_parms.ofdm_symbol_size*nsymb); - printf("tx_energy[%d] = %d\n",1,tx_energy[1]); - - for (k=0; k<PHY_vars_UE->lte_frame_parms.ofdm_symbol_size*nsymb; k++) - dl_ch_estimates_norm[1][k] = PHY_vars_UE->lte_ue_common_vars.dl_ch_estimates[2][0][k]/tx_energy[1]; - - for (k=0; k<PHY_vars_UE->lte_frame_parms.ofdm_symbol_size*nsymb; k++) - dl_ch_estimates_norm_short[k] = ((short *)dl_ch_estimates_norm[1])[k]; - - - for (k=pilot1*2*512; k<pilot1*2*512+2*300-1; k+=(2*dec_f)) { - if (dl_ch_estimates_norm_short[k]> (quant_v-1)) - dl_ch_estimates[k-pilot1*2*512+(2*300)/dec_f] = quant_v-1; - else if (dl_ch_estimates_norm_short[k]< -quant_v) - dl_ch_estimates[k-pilot1*2*512+(2*300)/dec_f] = -quant_v; - else - dl_ch_estimates[k-pilot1*2*512+(2*300)/dec_f] = dl_ch_estimates_norm_short[k]; - - if (dl_ch_estimates_norm_short[k+1]> (quant_v-1)) - dl_ch_estimates[k-pilot1*2*512+1+(2*300)/dec_f] = quant_v-1; - else if (dl_ch_estimates_norm_short[k]< -quant_v) - dl_ch_estimates[k-pilot1*2*512+1+(2*300)/dec_f] = -quant_v; - else - dl_ch_estimates[k-pilot1*2*512+1+(2*300)/dec_f] = dl_ch_estimates_norm_short[k+1]; - } - } - - if (PHY_vars_UE->lte_frame_parms.nb_antennas_rx>1) { - //tx_energy[1] = signal_energy(&(PHY_vars_UE->lte_ue_common_vars.dl_ch_estimates[eNB_id][1][0]),PHY_vars_UE->lte_frame_parms.ofdm_symbol_size*nsymb); - printf("tx_energy[%d] = %d\n",2,tx_energy[2]); - - for (k=0; k<PHY_vars_UE->lte_frame_parms.ofdm_symbol_size*nsymb; k++) - dl_ch_estimates_norm[2][k] = PHY_vars_UE->lte_ue_common_vars.dl_ch_estimates[1][0][k]/tx_energy[2]; - - for (k=0; k<PHY_vars_UE->lte_frame_parms.ofdm_symbol_size*nsymb; k++) - dl_ch_estimates_norm_short[k] = ((short *)dl_ch_estimates_norm[2])[k]; - - - for (k=pilot1*2*512; k<pilot1*2*512+2*300-1; k+=(2*dec_f)) { - if (dl_ch_estimates_norm_short[k] > (quant_v-1)) - dl_ch_estimates[k-pilot1*2*512+(2*600)/dec_f] = quant_v-1; - else if (dl_ch_estimates_norm_short[k]< (-quant_v)) - dl_ch_estimates[k-pilot1*2*512+(2*600)/dec_f] = -quant_v; - else - dl_ch_estimates[k-pilot1*2*512+2*600] = dl_ch_estimates_norm_short[k]; - - if (dl_ch_estimates_norm_short[k+1] > (quant_v-1)) - dl_ch_estimates[k-pilot1*2*512+1+(2*600)/dec_f] = quant_v-1; - else if (dl_ch_estimates_norm_short[k+1]< (-quant_v)) - dl_ch_estimates[k-pilot1*2*512+1+(2*600)/dec_f] = -quant_v; - else - dl_ch_estimates[k-pilot1*2*512+1+(2*600)/dec_f] = dl_ch_estimates_norm_short[k+1]; - } - } - - if ((PHY_vars_UE->lte_frame_parms.nb_antennas_rx>1) && (PHY_vars_eNB->lte_frame_parms.nb_antennas_tx>1)) { - //tx_energy[3]=signal_energy(&(PHY_vars_UE->lte_ue_common_vars.dl_ch_estimates[eNB_id][3][0]),PHY_vars_UE->lte_frame_parms.ofdm_symbol_size*nsymb); - printf("tx_energy[%d] = %d\n",3,tx_energy[3]); - - for (k=0; k<PHY_vars_UE->lte_frame_parms.ofdm_symbol_size*nsymb/2; k++) - dl_ch_estimates_norm[3][k] = PHY_vars_UE->lte_ue_common_vars.dl_ch_estimates[3][0][k]/tx_energy[3]; - - for (k=0; k<PHY_vars_UE->lte_frame_parms.ofdm_symbol_size*nsymb; k++) - dl_ch_estimates_norm_short[k] = ((short *)dl_ch_estimates_norm[3])[k]; - - for (k=pilot1*2*512; k<pilot1*2*512+2*300-1; k+=(2*dec_f)) { - if (dl_ch_estimates_norm_short[k]> (quant_v-1)) - dl_ch_estimates[k-pilot1*2*512+(2*900)/dec_f] = quant_v-1; - else if (dl_ch_estimates_norm_short[k]< (-quant_v)) - dl_ch_estimates[k-pilot1*2*512+(2*900)/dec_f] = -quant_v; - else - dl_ch_estimates[k-pilot1*2*512+(2*900)/dec_f] = dl_ch_estimates_norm_short[k]; - - if (dl_ch_estimates_norm_short[k+1]> (quant_v-1)) - dl_ch_estimates[k-pilot1*2*512+1+(2*900)/dec_f] = quant_v-1; - else if (dl_ch_estimates_norm_short[k+1]< (-quant_v)) - dl_ch_estimates[k-pilot1*2*512+1+(2*900)/dec_f] = -quant_v; - else - dl_ch_estimates[k-pilot1*2*512+1+(2*900)/dec_f] = dl_ch_estimates_norm_short[k+1]; - } - } -} - -void do_quan(PHY_VARS_eNB *PHY_vars_eNB, unsigned int nsymb, uint8_t pilot1, int quant_v, short *drs_ch_estimates, int UE_id) -{ - int k; - short tx_energy[2]; - short drs_ch_estimates_norm[2][PHY_vars_eNB->lte_frame_parms.ofdm_symbol_size*nsymb]; - short drs_ch_estimates_norm_short[PHY_vars_eNB->lte_frame_parms.ofdm_symbol_size*nsymb]; - - - //tx_energy[0] = signal_energy(&(PHY_vars_UE->lte_ue_common_vars.dl_ch_estimates[eNB_id][0][0]),PHY_vars_UE->lte_frame_parms.ofdm_symbol_size*nsymb); - for(k=0; k<2; k++) - tx_energy[k] = 8; - - for (k=0; k<PHY_vars_eNB->lte_frame_parms.ofdm_symbol_size*nsymb; k++) - drs_ch_estimates_norm[0][k] = ((short *)PHY_vars_eNB->lte_eNB_ulsch_vars[0]->drs_ch_estimates[UE_id][0])[k]/tx_energy[0]; - - for (k=pilot1*2*300; k<pilot1*2*300+2*300-1; k+=2) { - if (drs_ch_estimates_norm[0][k]>(quant_v-1)) - drs_ch_estimates[k-pilot1*2*300] = quant_v-1; - else if ((drs_ch_estimates_norm[0][k]) < (-quant_v)) - drs_ch_estimates[k-pilot1*2*300] = -quant_v; - else - drs_ch_estimates[k-pilot1*2*300] = drs_ch_estimates_norm[0][k]; - - if (drs_ch_estimates_norm[0][k+1]>(quant_v-1)) - drs_ch_estimates[k+1-pilot1*2*300] = quant_v-1; - else if ((drs_ch_estimates_norm[0][k+1])< (-quant_v)) - drs_ch_estimates[k+1-pilot1*2*300] = -quant_v; - else - drs_ch_estimates[k+1-pilot1*2*300] = drs_ch_estimates_norm[0][k+1]; - } - - /* - if (PHY_vars_eNB->lte_frame_parms.nb_antennas_tx>1) { - //tx_energy[2]=signal_energy(&(PHY_vars_UE->lte_ue_common_vars.dl_ch_estimates[eNB_id][2][0]),PHY_vars_UE->lte_frame_parms.ofdm_symbol_size*nsymb); - printf("tx_energy[%d] = %d\n",1,tx_energy[1]); - for (k=0; k<PHY_vars_UE->lte_frame_parms.ofdm_symbol_size*nsymb; k++) - dl_ch_estimates_norm[1][k] = PHY_vars_UE->lte_ue_common_vars.dl_ch_estimates[2][0][k]/tx_energy[1]; - - for (k=0;k<PHY_vars_UE->lte_frame_parms.ofdm_symbol_size*nsymb;k++) - dl_ch_estimates_norm_short[k] = ((short *)dl_ch_estimates_norm[1])[k]; - - - for (k=pilot1*2*512; k<pilot1*2*512+2*300-1; k+=(2*dec_f)) { - if (dl_ch_estimates_norm_short[k]> (quant_v-1)) - dl_ch_estimates[k-pilot1*2*512+(2*300)/dec_f] = quant_v-1; - else if (dl_ch_estimates_norm_short[k]< -quant_v) - dl_ch_estimates[k-pilot1*2*512+(2*300)/dec_f] = -quant_v; - else - dl_ch_estimates[k-pilot1*2*512+(2*300)/dec_f] = dl_ch_estimates_norm_short[k]; - - if (dl_ch_estimates_norm_short[k+1]> (quant_v-1)) - dl_ch_estimates[k-pilot1*2*512+1+(2*300)/dec_f] = quant_v-1; - else if (dl_ch_estimates_norm_short[k]< -quant_v) - dl_ch_estimates[k-pilot1*2*512+1+(2*300)/dec_f] = -quant_v; - else - dl_ch_estimates[k-pilot1*2*512+1+(2*300)/dec_f] = dl_ch_estimates_norm_short[k+1]; - } - } - - if (PHY_vars_UE->lte_frame_parms.nb_antennas_rx>1) { - //tx_energy[1] = signal_energy(&(PHY_vars_UE->lte_ue_common_vars.dl_ch_estimates[eNB_id][1][0]),PHY_vars_UE->lte_frame_parms.ofdm_symbol_size*nsymb); - printf("tx_energy[%d] = %d\n",2,tx_energy[2]); - for (k=0; k<PHY_vars_UE->lte_frame_parms.ofdm_symbol_size*nsymb; k++) - dl_ch_estimates_norm[2][k] = PHY_vars_UE->lte_ue_common_vars.dl_ch_estimates[1][0][k]/tx_energy[2]; - - for (k=0;k<PHY_vars_UE->lte_frame_parms.ofdm_symbol_size*nsymb;k++) - dl_ch_estimates_norm_short[k] = ((short *)dl_ch_estimates_norm[2])[k]; - - - for (k=pilot1*2*512; k<pilot1*2*512+2*300-1; k+=(2*dec_f)) { - if (dl_ch_estimates_norm_short[k] > (quant_v-1)) - dl_ch_estimates[k-pilot1*2*512+(2*600)/dec_f] = quant_v-1; - else if (dl_ch_estimates_norm_short[k]< (-quant_v)) - dl_ch_estimates[k-pilot1*2*512+(2*600)/dec_f] = -quant_v; - else - dl_ch_estimates[k-pilot1*2*512+2*600] = dl_ch_estimates_norm_short[k]; - - if (dl_ch_estimates_norm_short[k+1] > (quant_v-1)) - dl_ch_estimates[k-pilot1*2*512+1+(2*600)/dec_f] = quant_v-1; - else if (dl_ch_estimates_norm_short[k+1]< (-quant_v)) - dl_ch_estimates[k-pilot1*2*512+1+(2*600)/dec_f] = -quant_v; - else - dl_ch_estimates[k-pilot1*2*512+1+(2*600)/dec_f] = dl_ch_estimates_norm_short[k+1]; - } - } - - */ - - //write_output("dll1.m","dl1", drs_ch_estimates_norm[0],PHY_vars_eNB->lte_frame_parms.ofdm_symbol_size*nsymb,1,0); - //write_output("dll2.m","dl2", drs_ch_estimates,PHY_vars_eNB->lte_frame_parms.ofdm_symbol_size*nsymb,1,1); - //exit(-1); -} - - -//end Modif channel quantization at UE - -//calibration algo -void do_calibration(short K_dl_ch_estimates[25][2][600], short K_drs_ch_estimates[25][2][600], double PeNb_factor[2][600], int ofdm_syn, int n_K) -{ - - //Calib Algor in eNb - int i=0, s_c=0; - double ar=0,ai=0,br=0,bi=0,cr=0,ci=0,dr=0,di=0; - int aa; - int length_H_G = n_K*4; - - short H[length_H_G]; - short G[length_H_G]; - bzero(H,length_H_G); - bzero(G,length_H_G); - - //printf("ofdm_sym = %d\n",); exit(-1); - - //printf("i = %d \n",K_dl_ch_estimates[0][0][0]); - //exit(-1); - - for(s_c=0; s_c<600; s_c+=2) { - for(aa=0; aa<1; aa++) { - //system for 1 ant at primary, change to perform onother prim ant - for(i=0; i<n_K; i++) { - //printf("i = %d\n",i); - G[(i<<2)+0] = K_dl_ch_estimates[i][aa][s_c+0]; - G[(i<<2)+1] = K_dl_ch_estimates[i][aa][s_c+1]; - H[(i<<2)+0] = K_drs_ch_estimates[i][aa][s_c+0]; - H[(i<<2)+1] = K_drs_ch_estimates[i][aa][s_c+1]; - } - - for(i=0; i<n_K; i++) { - //LEN == K_est - // [A B]^H*[A B] - ar += H[(i<<2)+0]*H[(i<<2)+0] + H[(i<<2)+1]*H[(i<<2)+1]; //(a-ib)(a+ib)=(a^2+b^2) - // ai += -H[(i<<2)+0]*H[(i<<2)+1] + H[(i<<2)+1]*H[(i<<2)+0]; - br += H[(i<<2)+0]*G[(i<<2)+0] + H[(i<<2)+1]*G[(i<<2)+1]; - bi += -H[(i<<2)+0]*G[(i<<2)+1] + H[(i<<2)+1]*G[(i<<2)+0]; - //cr += G[(i<<2)+0]*H[(i<<2)+0] + G[(i<<2)+1]*H[(i<<2)+1]; - //ci += -G[(i<<2)+0]*H[(i<<2)+1] + G[(i<<2)+1]*H[(i<<2)+0]; - dr += G[(i<<2)+0]*G[(i<<2)+0] + G[(i<<2)+1]*G[(i<<2)+1]; - //di += -G[(i<<2)+0]*G[(i<<2)+1] + G[(i<<2)+1]*G[(i<<2)+0]; - //if((s_c>>1)==0 || (s_c>>1)==1 || (s_c>>1)==2 || (s_c>>1)==3) printf("\n ar=%d, ai=%d, br=%d, bi=%d, dr=%d, di=%d\n", ar,ai,br,bi,dr,di); - } - - ar = (double)(ar/100); - //ai = 0; - br = (double)(br/100); - bi = (double)(bi/100); - //cr = (double)(cr/100); - //ci = (double)(ci/100); - dr = (double)(dr/100); - //di = 0; - - - if( (ar-dr+iSqrt((ar-dr)*(ar-dr)+((br*br+bi*bi)*4)))==0) { - PeNb_factor[aa][s_c] = 0; - PeNb_factor[aa][s_c+1] = 0; - } else { - //printf("Dif de 0\n"); - PeNb_factor[aa][s_c] = (2*br/(ar-dr+iSqrt((ar-dr)*(ar-dr)+((br*br+bi*bi)*4)))); - PeNb_factor[aa][s_c+1] = (-2*bi/(ar-dr+iSqrt((ar-dr)*(ar-dr)+((br*br+bi*bi)*4)))); - } - - ar=0; - ai=0; - br=0; - bi=0; - cr=0; - ci=0; - dr=0; - di=0; - //if ((s_c>>1) > 4) exit(-1); - } - } - - msg("[CAL PROC]P_eNb DETERMINED... \n"); -} - - -//DCI2_5MHz_2A_M10PRB_TDD_t DLSCH_alloc_pdu2_2A[2]; -DCI2_5MHz_2D_M10PRB_TDD_t DLSCH_alloc_pdu2_2D[2]; - - -#define UL_RB_ALLOC 0x1ff; -#define CCCH_RB_ALLOC computeRIV(PHY_vars_eNB->lte_frame_parms.N_RB_UL,0,2) -//#define DLSCH_RB_ALLOC 0x1fbf // igore DC component,RB13 -#define DLSCH_RB_ALLOC 0x1fff // all 25 RBs -//#define DLSCH_RB_ALLOC 0x0001 - -int main(int argc, char **argv) -{ - - char c; - int k,i,j,b,aa,aarx,Msc_RS_idx; - - int s,Kr,Kr_bytes; - - double sigma2, sigma2_dB=10,SNR,snr0=-2.0,snr1,rate; - //modif start UL - unsigned int coded_bits_per_codeword_UE; - double sigma2_UE, sigma2_UE_dB=10, SNRmeas, rate_UE; - uint8_t control_only_flag = 0; - uint8_t cooperation_flag = 0; - int **txdata_UE; - channel_desc_t *UE2eNB; - uint8_t cyclic_shift = 0; - uint8_t beta_ACK=0,beta_RI=0,beta_CQI=2; - uint8_t srs_flag = 0; - char fname[20],vname[20]; - //modif end UL - double snr_step=1, snr_int=30; - //int **txdataF, **txdata; - int **txdata; -#ifdef IFFT_FPGA - int **txdataF2; - //modif start UL - int **txdataF2_UE; - //modif end UL - int ind; -#endif - LTE_DL_FRAME_PARMS *frame_parms; - double **s_re,**s_im,**r_re,**r_im; - //modif start UL - int llb; - double **s_re_UE, **s_im_UE, **r_re_UE, **r_im_UE; - //modif end UL - double forgetting_factor=1.0; //in [0,1] 0 means a new channel every time, 1 means keep the same channel - //double hold_channel=0; //use hold_channel=1 instead of forgetting_factor=1 (more efficient) - double iqim=0.0; - - uint8_t extended_prefix_flag=0,transmission_mode=1,n_tx=1,n_rx=1; - uint16_t Nid_cell=0; - - int eNB_id = 0, eNB_id_i = NUMBER_OF_eNB_MAX; - //modif start UL - int UE_id = 0; - unsigned char mcs_UE; - int dec_f=1; - short quant=8, quant_v; - //modif end UL - unsigned char mcs_eNB,dual_stream_UE = 0,awgn_flag=0,round_eNB,round_UE,dci_flag=0; - unsigned char i_mod = 2; - unsigned short NB_RB=conv_nprb(0,DLSCH_RB_ALLOC); - unsigned char Ns,l,m; - uint16_t tdd_config=3; - uint16_t n_rnti=0x1234; - - int n_users = 1; - - int decalibration = 1, phase_offset = 1; - - double s_time = 1/7.68e6; - double delta_offset_UL = 90; - double delta_offset_DL = 100; - double phase_inc_UL = 2*M_PI*delta_offset_UL*s_time; - double phase_inc_DL = 2*M_PI*delta_offset_DL*s_time; - - double phase_in_UL = 0;//phase_inc_UL; - double phase_in_DL = 0;//phase_inc_DL; - - SCM_t channel_model=Rayleigh1_corr; - - unsigned char *input_buffer[2]; - unsigned short input_buffer_length; - unsigned int ret_eNB,ret_UE; - unsigned int coded_bits_per_codeword,nsymb,dci_cnt,tbs; - - unsigned int tx_lev,tx_lev_dB,trials,errs_eNB[4]= {0,0,0,0},round_trials_UE[4]= {0,0,0,0},round_trials_eNB[4]= {0,0,0,0},dci_errors=0,dlsch_active=0,num_layers; - //modif start UL - unsigned int tx_lev_UE,tx_lev_UE_dB,errs_UE[4]= {0,0,0,0}; - //unsigned char *input_buffer_UE; //b - char *input_buffer_UE; //b - unsigned short input_buffer_length_UE; - //modif end UL - int re_allocated; - FILE *bler_fd; - char bler_fname[256]; - FILE *tikz_fd; - char tikz_fname[256]; - - FILE *input_trch_fd; - unsigned char input_trch_file=0; - FILE *input_fd=NULL; - unsigned char input_file=0; - char input_val_str[50],input_val_str2[50]; - - char input_trch_val[16]; - double pilot_sinr, abs_channel; - - // unsigned char pbch_pdu[6]; - - DCI_ALLOC_t dci_alloc[8],dci_alloc_rx[8]; - int num_common_dci=0,num_ue_spec_dci=0,num_dci=0; - - // FILE *rx_frame_file; - - int n_frames; - int n_ch_rlz = 1; - channel_desc_t *eNB2UE; - double snr; - uint8_t num_pdcch_symbols=3,num_pdcch_symbols_2=0; - uint8_t pilot1,pilot2,pilot3; - uint8_t rx_sample_offset = 0; - //char stats_buffer[4096]; - //int len; - uint8_t num_rounds = 1,fix_rounds=0; - uint8_t subframe=6; - //modif start UL - int subframe_UL=2; - //modif end UL - int u; - int abstx=0; - int iii; - FILE *csv_fd; - char csv_fname[20]; - int ch_realization; - int pmi_feedback=0; - // void *data; - // int ii; - // int bler; - double blerr,uncoded_ber,avg_ber; - short *uncoded_ber_bit; - uint8_t N_RB_DL=25,osf=1; - int16_t amp; - //modif start UL - unsigned char harq_pid; - FILE *trch_out_fd=NULL; - unsigned char nb_rb_UE=25, first_rb=0, bundling_flag=1; - //modif end UL -#ifdef XFORMS - FD_lte_scope *form; - char title[255]; -#endif - - // Calibration parameters - int P_eNb_active=0; - double PeNb_factor[2][600]; - - signal(SIGSEGV, handler); - - // default parameters - mcs_eNB = 0; - //modif start UL - mcs_UE = 4; - //modif end UL - n_frames = 1000; - snr0 = 0; - num_layers = 1; - - while ((c = getopt (argc, argv, "hadpm:n:o:s:f:t:c:g:r:F:x:y:z:M:N:I:i:R:S:C:T:b:u:w:X:q:D:")) != -1) { - switch (c) { - case 'a': - awgn_flag = 1; - break; - - case 'b': - tdd_config=atoi(optarg); - break; - - case 'd': - dci_flag = 1; - break; - - case 'm': - mcs_eNB = atoi(optarg); - break; - - /*case 'C': - beta_CQI = atoi(optarg); - if ((beta_CQI>15)||(beta_CQI<2)) { - printf("beta_cqi must be in (2..15)\n"); - exit(-1); - } - break; - - case 'R': - beta_RI = atoi(optarg); - if ((beta_RI>15)||(beta_RI<2)) { - printf("beta_ri must be in (0..13)\n"); - exit(-1); - } - break;*/ - //modif start UL - case 'w': - mcs_UE = atoi(optarg); - break; - - case 'r': - nb_rb_UE = atoi(optarg); - break; - - case 'f': - first_rb = atoi(optarg); - break; - - case 'q': - quant = atoi(optarg); - break; - - case 'D': - dec_f = atoi(optarg); - break; - - //modif end UL - case 'n': - n_frames = atoi(optarg); - break; - - case 'C': - Nid_cell = atoi(optarg); - break; - - case 'o': - rx_sample_offset = atoi(optarg); - break; - - case 'F': - forgetting_factor = atof(optarg); - break; - - case 's': - snr0 = atoi(optarg); - break; - - case 't': - //Td= atof(optarg); - printf("Please use the -G option to select the channel model\n"); - exit(-1); - break; - - case 'X': - snr_step= atof(optarg); - break; - - case 'M': - abstx= atof(optarg); - break; - - case 'N': - n_ch_rlz= atof(optarg); - break; - - case 'p': - extended_prefix_flag=1; - break; - - case 'c': - num_pdcch_symbols=atoi(optarg); - break; - - case 'g': - switch((char)*optarg) { - case 'A': - channel_model=SCM_A; - break; - - case 'B': - channel_model=SCM_B; - break; - - case 'C': - channel_model=SCM_C; - break; - - case 'D': - channel_model=SCM_D; - break; - - case 'E': - channel_model=EPA; - break; - - case 'F': - channel_model=EVA; - break; - - case 'G': - channel_model=ETU; - break; - - case 'H': - channel_model=Rayleigh8; - break; - - case 'I': - channel_model=Rayleigh1; - break; - - case 'J': - channel_model=Rayleigh1_corr; - break; - - case 'K': - channel_model=Rayleigh1_anticorr; - break; - - case 'L': - channel_model=Rice8; - break; - - case 'M': - channel_model=Rice1; - break; - - default: - msg("Unsupported channel model!\n"); - exit(-1); - } - - break; - - case 'x': - transmission_mode=atoi(optarg); - - if ((transmission_mode!=1) && - (transmission_mode!=2) && - (transmission_mode!=5) && - (transmission_mode!=6)) { - msg("Unsupported transmission mode %d\n",transmission_mode); - exit(-1); - } - - break; - - case 'y': - n_tx=atoi(optarg); - - if ((n_tx==0) || (n_tx>2)) { - msg("Unsupported number of tx antennas %d\n",n_tx); - exit(-1); - } - - break; - - case 'z': - n_rx=atoi(optarg); - - if ((n_rx==0) || (n_rx>2)) { - msg("Unsupported number of rx antennas %d\n",n_rx); - exit(-1); - } - - break; - - case 'I': - input_trch_fd = fopen(optarg,"r"); - input_trch_file=1; - break; - - case 'i': - input_fd = fopen(optarg,"r"); - input_file=1; - dci_flag = 1; - break; - - case 'R': - num_rounds=atoi(optarg); - fix_rounds=1; - break; - - case 'S': - subframe=atoi(optarg); - break; - - case 'T': - n_rnti=atoi(optarg); - break; - - case 'u': - dual_stream_UE=atoi(optarg); - - if ((n_tx!=2) || (transmission_mode!=5)) { - msg("Unsupported nb of decoded users: %d user(s), %d user(s) to decode\n", n_tx, dual_stream_UE); - exit(-1); - } - - break; - - case 'h': - default: - printf("%s -h(elp) -a(wgn on) -d(ci decoding on) -p(extended prefix on) -m mcs_eNB -n n_frames -s snr0 -t Delayspread -x transmission mode (1,2,5,6) -y TXant -z RXant -I trch_file\n",argv[0]); - printf("-h This message\n"); - printf("-a Use AWGN channel and not multipath\n"); - printf("-c Number of PDCCH symbols\n"); - printf("-m MCS_eNB\n"); - printf("-w MCS_UE\n"); - printf("-q quantization parameters\n"); - printf("-D DL decimacion factor at UE\n"); - printf("-r nb_rb_UE Number of ressource blocs in the UL\n"); - printf("-f First ressource bloc in the UL\n"); - printf("-d Transmit the DCI and compute its error statistics and the overall throughput\n"); - printf("-p Use extended prefix mode\n"); - printf("-n Number of frames to simulate\n"); - printf("-o Sample offset for receiver\n"); - printf("-s Starting SNR, runs from SNR to SNR+%.1fdB in steps of %.1fdB. If n_frames is 1 then just SNR is simulated and MATLAB/OCTAVE output is generated\n", snr_int, snr_step); - printf("-X step size of SNR, default value is 1.\n"); - printf("-t Delay spread for multipath channel\n"); - //printf("-r Ricean factor (dB, 0 dB = Rayleigh, 100 dB = almost AWGN)\n"); - printf("-g [A:M] Use 3GPP 25.814 SCM-A/B/C/D('A','B','C','D') or 36-101 EPA('E'), EVA ('F'),ETU('G') models (ignores delay spread and Ricean factor), Rayghleigh8 ('H'), Rayleigh1('I'), Rayleigh1_corr('J'), Rayleigh1_anticorr ('K'), Rice8('L'), Rice1('M')\n"); - printf("-F forgetting factor (0 new channel every trial, 1 channel constant\n"); - printf("-x Transmission mode (1,2,6 for the moment)\n"); - printf("-y Number of TX antennas used in eNB\n"); - printf("-z Number of RX antennas used in UE\n"); - printf("-R Number of HARQ rounds (fixed)\n"); - printf("-M Determines whether the Absraction flag is on or Off. 1-->On and 0-->Off. Default status is Off. \n"); - printf("-N Determines the number of Channel Realizations in Absraction mode. Default value is 1. \n"); - printf("-I Input filename for TrCH data (binary)\n"); - printf("-u Determines if the 2 streams at the UE are decoded or not. 0-->U2 is interference only and 1-->U2 is detected\n"); - exit(1); - break; - } - } - -#ifdef XFORMS - fl_initialize (&argc, argv, NULL, 0, 0); - form = create_form_lte_scope(); - sprintf (title, "LTE DLSIM SCOPE"); - fl_show_form (form->lte_scope, FL_PLACE_HOTSPOT, FL_FULLBORDER, title); -#endif - - if (transmission_mode==5) { - n_users = 2; - printf("dual_stream_UE=%d\n", dual_stream_UE); - } - - lte_param_init(n_tx,n_rx,transmission_mode,extended_prefix_flag,Nid_cell,tdd_config,N_RB_DL,osf); - - - printf("Setting mcs_eNB = %d\n",mcs_eNB); - //modif start UL - printf("Setting mcs_UE = %d\n",mcs_UE); - quant_v = (2<<(quant-1))/2; //b quantization bit - //printf("quant %d\n",quant_v); - //exit(-1); - //modif end UL - printf("NPRB = %d\n",NB_RB); - printf("n_frames = %d\n",n_frames); - printf("Transmission mode %d with %dx%d antenna configuration, Extended Prefix %d\n",transmission_mode,n_tx,n_rx,extended_prefix_flag); - - snr1 = snr0+snr_int; - printf("SNR0 %f, SNR1 %f\n",snr0,snr1); - - frame_parms = &PHY_vars_eNB->lte_frame_parms; - -#ifdef IFFT_FPGA - txdata = (int **)malloc16(2*sizeof(int*)); - txdata[0] = (int *)malloc16(FRAME_LENGTH_BYTES); - txdata[1] = (int *)malloc16(FRAME_LENGTH_BYTES); - - bzero(txdata[0],FRAME_LENGTH_BYTES); - bzero(txdata[1],FRAME_LENGTH_BYTES); - - txdataF2 = (int **)malloc16(2*sizeof(int*)); - txdataF2[0] = (int *)malloc16(FRAME_LENGTH_BYTES_NO_PREFIX); - txdataF2[1] = (int *)malloc16(FRAME_LENGTH_BYTES_NO_PREFIX); - - bzero(txdataF2[0],FRAME_LENGTH_BYTES_NO_PREFIX); - bzero(txdataF2[1],FRAME_LENGTH_BYTES_NO_PREFIX); - - //modif start UL - txdata_UE = (int **)malloc16(2*sizeof(int*)); - txdata_UE[0] = (int *)malloc16(FRAME_LENGTH_BYTES); - txdata_UE[1] = (int *)malloc16(FRAME_LENGTH_BYTES); - - bzero(txdata_UE[0],FRAME_LENGTH_BYTES); - bzero(txdata_UE[1],FRAME_LENGTH_BYTES); - - txdataF2_UE = (int **)malloc16(2*sizeof(int*)); - txdataF2_UE[0] = (int *)malloc16(FRAME_LENGTH_BYTES_NO_PREFIX); - txdataF2_UE[1] = (int *)malloc16(FRAME_LENGTH_BYTES_NO_PREFIX); - - bzero(txdataF2_UE[0],FRAME_LENGTH_BYTES_NO_PREFIX); - bzero(txdataF2_UE[1],FRAME_LENGTH_BYTES_NO_PREFIX); - //modif end UL -#else - txdata = PHY_vars_eNB->lte_eNB_common_vars.txdata[eNB_id]; - //modif start UL - txdata_UE = PHY_vars_UE->lte_ue_common_vars.txdata; - //modif end UL -#endif - - - s_re = malloc(2*sizeof(double*)); - s_im = malloc(2*sizeof(double*)); - r_re = malloc(2*sizeof(double*)); - r_im = malloc(2*sizeof(double*)); - nsymb = (PHY_vars_eNB->lte_frame_parms.Ncp == 0) ? 14 : 12; - //modif start UL - //int dl_ch_estimates_norm[4][PHY_vars_UE->lte_frame_parms.ofdm_symbol_size*nsymb/2]; - int n_K=15; - int dl_ch_estimates_length=(2*300*4)/dec_f; - short dl_ch_estimates[dl_ch_estimates_length]; - bzero(dl_ch_estimates,(dl_ch_estimates_length)); - - short K_dl_ch_estimates[n_K][2][600]; - short K_drs_ch_estimates[n_K][2][600]; - - double s_re_out[2*nsymb*OFDM_SYMBOL_SIZE_COMPLEX_SAMPLES], s_im_out[2*nsymb*OFDM_SYMBOL_SIZE_COMPLEX_SAMPLES], r_re_out[2*nsymb*OFDM_SYMBOL_SIZE_COMPLEX_SAMPLES], - r_im_out[2*nsymb*OFDM_SYMBOL_SIZE_COMPLEX_SAMPLES]; - - for(aa=0; aa<2; aa++) { - for(k=0; k<n_K; k++) { - bzero(K_dl_ch_estimates[k][aa],600); - bzero(K_drs_ch_estimates[k][aa],600); - } - } - - int drs_ch_estimates_length=(2*300*4)/dec_f; - short drs_ch_estimates[drs_ch_estimates_length]; - bzero(drs_ch_estimates,(drs_ch_estimates_length)); - - - s_re_UE = malloc(2*sizeof(double*)); - s_im_UE = malloc(2*sizeof(double*)); - r_re_UE = malloc(2*sizeof(double*)); - r_im_UE = malloc(2*sizeof(double*)); - - coded_bits_per_codeword_UE = nb_rb_UE * (12 * get_Qm(mcs_UE)) * nsymb; - rate_UE = (double)dlsch_tbs25[get_I_TBS(mcs_UE)][nb_rb_UE-1]/(coded_bits_per_codeword_UE); - //modif end UL - - printf("Channel Model=%d\n",channel_model); - printf("SCM-A=%d, SCM-B=%d, SCM-C=%d, SCM-D=%d, EPA=%d, EVA=%d, ETU=%d, Rayleigh8=%d, Rayleigh1=%d, Rayleigh1_corr=%d, Rayleigh1_anticorr=%d, Rice1=%d, Rice8=%d\n", - SCM_A, SCM_B, SCM_C, SCM_D, EPA, EVA, ETU, Rayleigh8, Rayleigh1, Rayleigh1_corr, Rayleigh1_anticorr, Rice1, Rice8); - sprintf(bler_fname,"second_bler_tx%d_mcs%d_chan%d.csv",transmission_mode,mcs_eNB,channel_model); - bler_fd = fopen(bler_fname,"w"); - fprintf(bler_fd,"SNR; MCS; TBS; rate; err0; trials0; err1; trials1; err2; trials2; err3; trials3; dci_err\n"); - - if(abstx) { - // CSV file - sprintf(csv_fname,"data_out%d.m",mcs_eNB); - csv_fd = fopen(csv_fname,"w"); - fprintf(csv_fd,"data_all%d=[",mcs_eNB); - } - - sprintf(tikz_fname, "second_bler_tx%d_u2=%d_mcs%d_chan%d_nsimus%d",transmission_mode,dual_stream_UE,mcs_eNB,channel_model,n_frames); - tikz_fd = fopen(tikz_fname,"w"); - - switch (mcs_eNB) { - case 0: - fprintf(tikz_fd,"\\addplot[color=blue, mark=star] plot coordinates {"); - break; - - case 1: - fprintf(tikz_fd,"\\addplot[color=red, mark=star] plot coordinates {"); - break; - - case 2: - fprintf(tikz_fd,"\\addplot[color=green, mark=star] plot coordinates {"); - break; - - case 3: - fprintf(tikz_fd,"\\addplot[color=yellow, mark=star] plot coordinates {"); - break; - - case 4: - fprintf(tikz_fd,"\\addplot[color=black, mark=star] plot coordinates {"); - break; - - case 5: - fprintf(tikz_fd,"\\addplot[color=blue, mark=o] plot coordinates {"); - break; - - case 6: - fprintf(tikz_fd,"\\addplot[color=red, mark=o] plot coordinates {"); - break; - - case 7: - fprintf(tikz_fd,"\\addplot[color=green, mark=o] plot coordinates {"); - break; - - case 8: - fprintf(tikz_fd,"\\addplot[color=yellow, mark=o] plot coordinates {"); - break; - - case 9: - fprintf(tikz_fd,"\\addplot[color=black, mark=o] plot coordinates {"); - break; - } - - for (i=0; i<2; i++) { - s_re[i] = malloc(FRAME_LENGTH_COMPLEX_SAMPLES*sizeof(double)); - s_im[i] = malloc(FRAME_LENGTH_COMPLEX_SAMPLES*sizeof(double)); - r_re[i] = malloc(FRAME_LENGTH_COMPLEX_SAMPLES*sizeof(double)); - r_im[i] = malloc(FRAME_LENGTH_COMPLEX_SAMPLES*sizeof(double)); - //modif start UL - s_re_UE[i] = malloc(FRAME_LENGTH_COMPLEX_SAMPLES*sizeof(double)); - s_im_UE[i] = malloc(FRAME_LENGTH_COMPLEX_SAMPLES*sizeof(double)); - r_re_UE[i] = malloc(FRAME_LENGTH_COMPLEX_SAMPLES*sizeof(double)); - r_im_UE[i] = malloc(FRAME_LENGTH_COMPLEX_SAMPLES*sizeof(double)); - //modif end UL - - } - - - //PHY_vars_UE->lte_ue_pdcch_vars[0]->crnti = n_rnti; - PHY_vars_UE->lte_ue_pdcch_vars[0]->crnti = 14; - - //modif start UL - UL_alloc_pdu.type = 0; - UL_alloc_pdu.rballoc = computeRIV(PHY_vars_eNB->lte_frame_parms.N_RB_UL,first_rb,nb_rb_UE);// 12 RBs from position 8 - printf("rballoc %d (dci %x)\n",UL_alloc_pdu.rballoc,*(uint32_t *)&UL_alloc_pdu); - UL_alloc_pdu.mcs = mcs_UE; - UL_alloc_pdu.ndi = 1; - UL_alloc_pdu.TPC = 0; - UL_alloc_pdu.cqi_req = 0; - UL_alloc_pdu.cshift = 0; - UL_alloc_pdu.dai = 1; - - PHY_vars_UE->PHY_measurements.rank[0] = 0; - PHY_vars_UE->transmission_mode[0] = transmission_mode; - PHY_vars_UE->pucch_config_dedicated[0].tdd_AckNackFeedbackMode = bundling_flag == 1 ? bundling : multiplexing; - PHY_vars_eNB->transmission_mode[0] = transmission_mode; - PHY_vars_eNB->pucch_config_dedicated[0].tdd_AckNackFeedbackMode = bundling_flag == 1 ? bundling : multiplexing; - PHY_vars_UE->lte_frame_parms.pusch_config_common.ul_ReferenceSignalsPUSCH.groupHoppingEnabled = 1; - PHY_vars_eNB->lte_frame_parms.pusch_config_common.ul_ReferenceSignalsPUSCH.groupHoppingEnabled = 1; - PHY_vars_UE->lte_frame_parms.pusch_config_common.ul_ReferenceSignalsPUSCH.sequenceHoppingEnabled = 0; - PHY_vars_eNB->lte_frame_parms.pusch_config_common.ul_ReferenceSignalsPUSCH.sequenceHoppingEnabled = 0; - PHY_vars_UE->lte_frame_parms.pusch_config_common.ul_ReferenceSignalsPUSCH.groupAssignmentPUSCH = 0; - PHY_vars_eNB->lte_frame_parms.pusch_config_common.ul_ReferenceSignalsPUSCH.groupAssignmentPUSCH = 0; - msg("Init UL hopping UE\n"); - init_ul_hopping(&PHY_vars_UE->lte_frame_parms); - msg("Init UL hopping eNB\n"); - init_ul_hopping(&PHY_vars_eNB->lte_frame_parms); - - if (n_frames==1) { - for (b=0; b<33; b++) { - printf("dftsizes[%d] %d\n",b,dftsizes[b]); - - if ((nb_rb_UE*12)==dftsizes[b]) - Msc_RS_idx = b; - } - - printf("nb_rb_UE %d => Msc_RS_idx %d\n",nb_rb_UE,Msc_RS_idx); - - for (u=0; u<30; u++) { - printf("Writing u %d\n",u); - sprintf(fname,"ul_zc%d_%d.m",nb_rb_UE,u); - sprintf(vname,"ulzc%d_%d",nb_rb_UE,u); - write_output(fname,vname,(void*)&ul_ref_sigs[u][0][Msc_RS_idx][0],2*nb_rb_UE*12,1,1); - } - } - - // printf("RIV %d\n",UL_alloc_pdu.rballoc); - //modif end UL - - // Fill in UL_alloc - CCCH_alloc_pdu.type = 0; - CCCH_alloc_pdu.vrb_type = 0; - CCCH_alloc_pdu.rballoc = CCCH_RB_ALLOC; - CCCH_alloc_pdu.ndi = 1; - CCCH_alloc_pdu.mcs = 1; - CCCH_alloc_pdu.harq_pid = 0; - //modif start UL - DLSCH_alloc_pdu2.rah = 0; - DLSCH_alloc_pdu2.rballoc = DLSCH_RB_ALLOC; - DLSCH_alloc_pdu2.TPC = 0; - DLSCH_alloc_pdu2.dai = 0; - DLSCH_alloc_pdu2.harq_pid = 0; - DLSCH_alloc_pdu2.tb_swap = 0; - DLSCH_alloc_pdu2.mcs1 = mcs_UE;//to check - DLSCH_alloc_pdu2.ndi1 = 1; - DLSCH_alloc_pdu2.rv1 = 0; - // Forget second codeword - DLSCH_alloc_pdu2.tpmi = 5 ; // precoding - //modif end UL - - DLSCH_alloc_pdu2_2D[0].rah = 0; - DLSCH_alloc_pdu2_2D[0].rballoc = DLSCH_RB_ALLOC; - DLSCH_alloc_pdu2_2D[0].TPC = 0; - DLSCH_alloc_pdu2_2D[0].dai = 0; - DLSCH_alloc_pdu2_2D[0].harq_pid = 0; - DLSCH_alloc_pdu2_2D[0].tb_swap = 0; - DLSCH_alloc_pdu2_2D[0].mcs1 = mcs_eNB; - DLSCH_alloc_pdu2_2D[0].ndi1 = 1; - DLSCH_alloc_pdu2_2D[0].rv1 = 0; - // Forget second codeword - DLSCH_alloc_pdu2_2D[0].tpmi = (transmission_mode>=5 ? 5 : 0); // precoding - DLSCH_alloc_pdu2_2D[0].dl_power_off = (transmission_mode==5 ? 0 : 1); - - DLSCH_alloc_pdu2_2D[1].rah = 0; - DLSCH_alloc_pdu2_2D[1].rballoc = DLSCH_RB_ALLOC; - DLSCH_alloc_pdu2_2D[1].TPC = 0; - DLSCH_alloc_pdu2_2D[1].dai = 0; - DLSCH_alloc_pdu2_2D[1].harq_pid = 0; - DLSCH_alloc_pdu2_2D[1].tb_swap = 0; - DLSCH_alloc_pdu2_2D[1].mcs1 = mcs_eNB; - DLSCH_alloc_pdu2_2D[1].ndi1 = 1; - DLSCH_alloc_pdu2_2D[1].rv1 = 0; - // Forget second codeword - DLSCH_alloc_pdu2_2D[1].tpmi = (transmission_mode>=5 ? 5 : 0) ; // precoding - DLSCH_alloc_pdu2_2D[1].dl_power_off = (transmission_mode==5 ? 0 : 1); - - // Create transport channel structures for SI pdus - PHY_vars_eNB->dlsch_eNB_SI = new_eNB_dlsch(1,1,0); - PHY_vars_UE->dlsch_ue_SI[0] = new_ue_dlsch(1,1,0); - PHY_vars_eNB->dlsch_eNB_SI->rnti = SI_RNTI; - PHY_vars_UE->dlsch_ue_SI[0]->rnti = SI_RNTI; - - eNB2UE = new_channel_desc_scm(PHY_vars_eNB->lte_frame_parms.nb_antennas_tx, - PHY_vars_UE->lte_frame_parms.nb_antennas_rx, - channel_model, - BW, - forgetting_factor, - rx_sample_offset, - 0); - - //modif start UL - PHY_vars_UE->lte_frame_parms.soundingrs_ul_config_common.srs_BandwidthConfig = 2; - PHY_vars_UE->lte_frame_parms.soundingrs_ul_config_common.srs_SubframeConfig = 7; - PHY_vars_UE->soundingrs_ul_config_dedicated[eNB_id].srs_Bandwidth = 0; - PHY_vars_UE->soundingrs_ul_config_dedicated[eNB_id].transmissionComb = 0; - PHY_vars_UE->soundingrs_ul_config_dedicated[eNB_id].freqDomainPosition = 0; - - PHY_vars_eNB->lte_frame_parms.soundingrs_ul_config_common.srs_BandwidthConfig = 2; - PHY_vars_eNB->lte_frame_parms.soundingrs_ul_config_common.srs_SubframeConfig = 7; - - PHY_vars_eNB->soundingrs_ul_config_dedicated[UE_id].srs_ConfigIndex = 1; - PHY_vars_eNB->soundingrs_ul_config_dedicated[UE_id].srs_Bandwidth = 0; - PHY_vars_eNB->soundingrs_ul_config_dedicated[UE_id].transmissionComb = 0; - PHY_vars_eNB->soundingrs_ul_config_dedicated[UE_id].freqDomainPosition = 0; - PHY_vars_eNB->cooperation_flag = cooperation_flag; - // PHY_vars_eNB->eNB_UE_stats[0].SRS_parameters = PHY_vars_UE->SRS_parameters; - - PHY_vars_eNB->pusch_config_dedicated[UE_id].betaOffset_ACK_Index = beta_ACK; - PHY_vars_eNB->pusch_config_dedicated[UE_id].betaOffset_RI_Index = beta_RI; - PHY_vars_eNB->pusch_config_dedicated[UE_id].betaOffset_CQI_Index = beta_CQI; - PHY_vars_UE->pusch_config_dedicated[eNB_id].betaOffset_ACK_Index = beta_ACK; - PHY_vars_UE->pusch_config_dedicated[eNB_id].betaOffset_RI_Index = beta_RI; - PHY_vars_UE->pusch_config_dedicated[eNB_id].betaOffset_CQI_Index = beta_CQI; - - printf("PUSCH Beta : ACK %f, RI %f, CQI %f\n",(double)beta_ack[beta_ACK]/8,(double)beta_ri[beta_RI]/8,(double)beta_cqi[beta_CQI]/8); - - UE2eNB = new_channel_desc_scm(PHY_vars_UE->lte_frame_parms.nb_antennas_tx,//b - PHY_vars_eNB->lte_frame_parms.nb_antennas_rx,//b - channel_model, - BW, - forgetting_factor, - 0, //rx_sample_offset - 0); - PHY_vars_eNB->ulsch_eNB[0] = new_eNB_ulsch(3,0); - PHY_vars_UE->ulsch_ue[0] = new_ue_ulsch(3,0); - //modif end UL - - if (eNB2UE==NULL) { - msg("Problem generating channel model. Exiting.\n"); - exit(-1); - } - - // if (hold_channel==1) - //random_channel(eNB2UE); - - //UE2eNB = eNB2UE; - - for (k=0; k<n_users; k++) { - // Create transport channel structures for 2 transport blocks (MIMO) - for (i=0; i<2; i++) { - PHY_vars_eNB->dlsch_eNB[k][i] = new_eNB_dlsch(1,8,0); - - if (!PHY_vars_eNB->dlsch_eNB[k][i]) { - printf("Can't get eNB dlsch structures\n"); - exit(-1); - } - - PHY_vars_eNB->dlsch_eNB[k][i]->rnti = n_rnti+k; - } - } - - for (i=0; i<2; i++) { - PHY_vars_UE->dlsch_ue[0][i] = new_ue_dlsch(1,8,0); - - if (!PHY_vars_UE->dlsch_ue[0][i]) { - printf("Can't get ue dlsch structures\n"); - exit(-1); - } - - PHY_vars_UE->dlsch_ue[0][i]->rnti = n_rnti; //b Check rnti numb - } - - generate_ue_ulsch_params_from_dci((void *)&UL_alloc_pdu, - 14, - (subframe_UL<4)?(subframe_UL+6):(subframe_UL-4), - format0, - PHY_vars_UE, - SI_RNTI, - RA_RNTI, - P_RNTI, - 0, - srs_flag); - - generate_eNB_ulsch_params_from_dci((DCI0_5MHz_TDD_1_6_t *)&UL_alloc_pdu, - 14, - (subframe_UL<4)?(subframe_UL+6):(subframe_UL-4), - format0, - 0, - PHY_vars_eNB, - SI_RNTI, - RA_RNTI, - P_RNTI, - srs_flag); - - PHY_vars_UE->ulsch_ue[0]->o_ACK[0] = 1; - //modif end UL - - - if (DLSCH_alloc_pdu2_2D[0].tpmi == 5) { - - PHY_vars_eNB->eNB_UE_stats[0].DL_pmi_single = (unsigned short)(taus()&0xffff); - - if (n_users>1) - PHY_vars_eNB->eNB_UE_stats[1].DL_pmi_single = (PHY_vars_eNB->eNB_UE_stats[0].DL_pmi_single ^ 0x1555); //opposite PMI - } else { - PHY_vars_eNB->eNB_UE_stats[0].DL_pmi_single = 0; - - if (n_users>1) - PHY_vars_eNB->eNB_UE_stats[1].DL_pmi_single = 0; - } - - - if (input_fd==NULL) { - - for(k=0; k<n_users; k++) { - printf("Generating dlsch params for user %d\n",k); - generate_eNB_dlsch_params_from_dci(0, - &DLSCH_alloc_pdu2_2D[k], - n_rnti+k, - format2_2D_M10PRB, - PHY_vars_eNB->dlsch_eNB[k], - &PHY_vars_eNB->lte_frame_parms, - SI_RNTI, - RA_RNTI, - P_RNTI, - PHY_vars_eNB->eNB_UE_stats[k].DL_pmi_single); - } - - num_dci = 0; - num_ue_spec_dci = 0; - num_common_dci = 0; - - - // UE specific DCI - for(k=0; k<n_users; k++) { - memcpy(&dci_alloc[num_dci].dci_pdu[0],&DLSCH_alloc_pdu2_2D[k],sizeof(DCI2_5MHz_2D_M10PRB_TDD_t)); - dci_alloc[num_dci].dci_length = sizeof_DCI2_5MHz_2D_M10PRB_TDD_t; - dci_alloc[num_dci].L = 2; - dci_alloc[num_dci].rnti = n_rnti+k; - dci_alloc[num_dci].format = format2_2D_M10PRB; - - dump_dci(&PHY_vars_eNB->lte_frame_parms,&dci_alloc[num_dci]); - - num_dci++; - num_ue_spec_dci++; - - - } - - for (k=0; k<n_users; k++) { - - input_buffer_length = PHY_vars_eNB->dlsch_eNB[k][0]->harq_processes[0]->TBS/8; - input_buffer[k] = (unsigned char *)malloc(input_buffer_length+4); - memset(input_buffer[k],0,input_buffer_length+4); - - if (input_trch_file==0) { - for (i=0; i<input_buffer_length; i++) { - input_buffer[k][i]= (unsigned char)(taus()&0xff); - } - } - - else { - i=0; - - while ((!feof(input_trch_fd)) && (i<input_buffer_length<<3)) { - fscanf(input_trch_fd,"%s",input_trch_val); - - if (input_trch_val[0] == '1') - input_buffer[k][i>>3]+=(1<<(7-(i&7))); - - if (i<16) - printf("input_trch_val %d : %c\n",i,input_trch_val[0]); - - i++; - - if (((i%8) == 0) && (i<17)) - printf("%x\n",input_buffer[k][(i-1)>>3]); - } - - printf("Read in %d bits\n",i); - } - } - } - - if (PHY_vars_eNB->lte_frame_parms.Ncp == 0) { // normal prefix - pilot1 = 4; - pilot2 = 7; - pilot3 = 11; - } else { // extended prefix - pilot1 = 3; - pilot2 = 6; - pilot3 = 9; - } - - for (ch_realization=0; ch_realization<n_ch_rlz; ch_realization++) { - if(abstx) { - printf("**********************Channel Realization Index = %d **************************\n", ch_realization); - } - - for (SNR=snr0; SNR<snr1; SNR+=snr_step) { - errs_eNB[0]=0; - errs_eNB[1]=0; - errs_eNB[2]=0; - errs_eNB[3]=0; - round_trials_eNB[0] = 0; - round_trials_eNB[1] = 0; - round_trials_eNB[2] = 0; - round_trials_eNB[3] = 0; - errs_UE[0]=0; - errs_UE[1]=0; - errs_UE[2]=0; - errs_UE[3]=0; - round_trials_UE[0] = 0; - round_trials_UE[1] = 0; - round_trials_UE[2] = 0; - round_trials_UE[3] = 0; - - random_channel(eNB2UE); - - UE2eNB = eNB2UE; - - dci_errors=0; - avg_ber = 0; - llb=0; - round_UE=0; - round_eNB=0; - //modif start UL - randominit(0); - - harq_pid = subframe2harq_pid(&PHY_vars_UE->lte_frame_parms,subframe_UL); - - if (input_fd == NULL) { - - input_buffer_length_UE = PHY_vars_UE->ulsch_ue[0]->harq_processes[harq_pid]->TBS/8; - - //input_buffer_UE = (unsigned char *)malloc(input_buffer_length_UE+4);//b - input_buffer_UE = (char *)malloc(input_buffer_length_UE+4);//b - mac_xface->frame=1; - - if (n_frames == 1) { - trch_out_fd = fopen("ulsch_trch.txt","w"); - - for (i=0; i<input_buffer_length_UE; i++) { - input_buffer_UE[i] = taus()&0xff; //b - - //printf("input_buffer_UE[%d] = %d\n", i,input_buffer_UE[i]); - for (j=0; j<8; j++) - fprintf(trch_out_fd,"%d\n",(input_buffer_UE[i]>>(7-j))&1); - } //exit(-1); - - fclose(trch_out_fd); - } - } else { - n_frames=1; - i=0; - - while (!feof(input_fd)) { - fscanf(input_fd,"%s %s",input_val_str,input_val_str2);//&input_val1,&input_val2); - - if ((i%4)==0) { - ((short*)txdata_UE[0])[i/2] = (short)((1<<15)*strtod(input_val_str,NULL)); - ((short*)txdata_UE[0])[(i/2)+1] = (short)((1<<15)*strtod(input_val_str2,NULL)); - - if ((i/4)<100) - printf("sample %d => %e + j%e (%d +j%d)\n",i/4,strtod(input_val_str,NULL),strtod(input_val_str2,NULL),((short*)txdata_UE[0])[i/4],((short*)txdata_UE[0])[(i/4)+1]);//1,input_val2,); - } - - i++; - - if (i>(FRAME_LENGTH_SAMPLES)) - break; - } - - printf("Read in %d samples\n",i/4); - write_output("txsig0_UE.m","txs0_UE", txdata_UE[0],2*frame_parms->samples_per_tti,1,1); - - tx_lev_UE = signal_energy(&txdata_UE[0][0], - OFDM_SYMBOL_SIZE_COMPLEX_SAMPLES); - tx_lev_UE_dB = (unsigned int) dB_fixed(tx_lev_UE); - - } - - //modif end UL - - for (trials = 0; trials<n_frames; trials++) { - // printf("Trial %d\n",trials); - fflush(stdout); - round_eNB=0; - round_UE=0; - - //modif start b - - if(trials > 0) { - for (i=0; i<input_buffer_length_UE; i++) { - input_buffer_UE[i]=(char)(dl_ch_estimates[i]); - //printf("input_buffer_UE[%d]= %d, dl_ch_estimates[%d]=%d \n",i,input_buffer_UE[i],i,dl_ch_estimates[i]); - - } - - //for(aa=0;aa<12;aa++) - // printf("transmit[%d]=%d \n",aa,input_buffer_UE[aa]); - } - - //modif end b - - //if (trials%100==0) - eNB2UE->first_run = 1; - - while (round_eNB < num_rounds) { - round_trials_eNB[round_eNB]++; - round_trials_UE[round_UE]++; - - if(transmission_mode>=5) - pmi_feedback=1; - else - pmi_feedback=0; - -PMI_FEEDBACK: - - //modif start - // printf("Trial %d : Round %d, pmi_feedback %d \n",trials,round_eNB,pmi_feedback); - for (aa=0; aa<PHY_vars_eNB->lte_frame_parms.nb_antennas_tx; aa++) { -#ifdef IFFT_FPGA - memset(&PHY_vars_eNB->lte_eNB_common_vars.txdataF[eNB_id][aa][0],0,NUMBER_OF_USEFUL_CARRIERS*NUMBER_OF_SYMBOLS_PER_FRAME*sizeof(mod_sym_t)); -#else - memset(&PHY_vars_eNB->lte_eNB_common_vars.txdataF[eNB_id][aa][0],0,FRAME_LENGTH_COMPLEX_SAMPLES_NO_PREFIX*sizeof(mod_sym_t)); -#endif - } - - - if (input_fd==NULL) { - if (round_UE == 0) { - //modif start - PHY_vars_eNB->ulsch_eNB[0]->harq_processes[0]->Ndi = 1; - PHY_vars_eNB->ulsch_eNB[0]->harq_processes[0]->rvidx = round_UE>>1; - PHY_vars_UE->ulsch_ue[0]->harq_processes[0]->Ndi = 1; - PHY_vars_UE->ulsch_ue[0]->harq_processes[0]->rvidx = round_UE>>1; - //modif end - } else { - //modif start - PHY_vars_eNB->ulsch_eNB[0]->harq_processes[0]->Ndi = 0; - PHY_vars_eNB->ulsch_eNB[0]->harq_processes[0]->rvidx = round_UE>>1; - PHY_vars_UE->ulsch_ue[0]->harq_processes[0]->Ndi = 0; - PHY_vars_UE->ulsch_ue[0]->harq_processes[0]->rvidx = round_UE>>1; - //modif start - - } - - if (round_eNB == 0) { - PHY_vars_eNB->dlsch_eNB[0][0]->harq_processes[0]->Ndi = 1; - PHY_vars_eNB->dlsch_eNB[0][0]->harq_processes[0]->rvidx = round_eNB>>1; - DLSCH_alloc_pdu2_2D[0].ndi1 = 1; - DLSCH_alloc_pdu2_2D[0].rv1 = 0; - memcpy(&dci_alloc[0].dci_pdu[0],&DLSCH_alloc_pdu2_2D[0],sizeof(DCI2_5MHz_2D_M10PRB_TDD_t)); - } else { - - PHY_vars_eNB->dlsch_eNB[0][0]->harq_processes[0]->Ndi = 0; - PHY_vars_eNB->dlsch_eNB[0][0]->harq_processes[0]->rvidx = round_eNB>>1; - DLSCH_alloc_pdu2_2D[0].ndi1 = 0; - DLSCH_alloc_pdu2_2D[0].rv1 = round_eNB>>1; - memcpy(&dci_alloc[0].dci_pdu[0],&DLSCH_alloc_pdu2_2D[0],sizeof(DCI2_5MHz_2D_M10PRB_TDD_t)); - } - - //modif start UL -#ifdef OFDMA_ULSCH - - if (srs_flag) - generate_srs_tx(PHY_vars_UE,0,AMP,subframe_UL); - - generate_drs_pusch(PHY_vars_UE,0,AMP,subframe_UL,first_rb,nb_rb_UE); - -#else - - if (srs_flag) - generate_srs_tx(PHY_vars_UE,0,scfdma_amps[nb_rb_UE],subframe_UL); - - generate_drs_pusch(PHY_vars_UE,0, - scfdma_amps[nb_rb_UE],subframe_UL, - PHY_vars_UE->ulsch_ue[0]->harq_processes[0]->first_rb, - PHY_vars_UE->ulsch_ue[0]->harq_processes[0]->nb_rb); -#endif - - //printf("harq_pid = %d\n\n",harq_pid); - if (ulsch_encoding(input_buffer_UE, //prob - &PHY_vars_UE->lte_frame_parms, - PHY_vars_UE->ulsch_ue[0], - harq_pid, - 1, // transmission mode - control_only_flag, - 1// Nbundled - )==-1) { - printf("ulsim.c Problem with ulsch_encoding\n"); - exit(-1); - } - -#ifdef OFDMA_ULSCH - ulsch_modulation(PHY_vars_UE->lte_ue_common_vars.txdataF,AMP,subframe_UL,&PHY_vars_UE->lte_frame_parms,PHY_vars_UE->ulsch_ue[0],cooperation_flag); -#else - // printf("Generating PUSCH in subframe %d with amp %d, nb_rb %d\n",subframe,scfdma_amps[nb_rb_UE],nb_rb_UE); - ulsch_modulation(PHY_vars_UE->lte_ue_common_vars.txdataF,scfdma_amps[nb_rb_UE], - subframe_UL,&PHY_vars_UE->lte_frame_parms, - PHY_vars_UE->ulsch_ue[0],cooperation_flag); -#endif - //modif end UL - - //********************** DL part - num_pdcch_symbols_2 = generate_dci_top(num_ue_spec_dci, - num_common_dci, - dci_alloc, - 0, - 1024, - &PHY_vars_eNB->lte_frame_parms, - PHY_vars_eNB->lte_eNB_common_vars.txdataF[eNB_id], - subframe); - - if (num_pdcch_symbols_2 > num_pdcch_symbols) { - msg("Error: given num_pdcch_symbols not big enough\n"); - exit(-1); - } - - - for (k=0; k<n_users; k++) { - coded_bits_per_codeword = get_G(&PHY_vars_eNB->lte_frame_parms, - PHY_vars_eNB->dlsch_eNB[k][0]->nb_rb, - PHY_vars_eNB->dlsch_eNB[k][0]->rb_alloc, - get_Qm(PHY_vars_eNB->dlsch_eNB[k][0]->harq_processes[0]->mcs), - num_pdcch_symbols, - subframe); - -#ifdef TBS_FIX - tbs = (double)3*dlsch_tbs25[get_I_TBS(PHY_vars_eNB->dlsch_eNB[k][0]->harq_processes[0]->mcs)][PHY_vars_eNB->dlsch_eNB[k][0]->nb_rb-1]/4; -#else - tbs = (double)dlsch_tbs25[get_I_TBS(PHY_vars_eNB->dlsch_eNB[k][0]->harq_processes[0]->mcs)][PHY_vars_eNB->dlsch_eNB[k][0]->nb_rb-1]; -#endif - - rate = (double)tbs/(double)coded_bits_per_codeword; - - uncoded_ber_bit = (short*) malloc(2*coded_bits_per_codeword); - - if (trials==0 && round_eNB==0) - printf("Rate = %f (G %d, TBS %d, TBS_UE %d,mod %d, pdcch_sym %d)\n", - rate, - coded_bits_per_codeword, - tbs, - PHY_vars_UE->ulsch_ue[0]->harq_processes[harq_pid]->TBS,//b - get_Qm(PHY_vars_eNB->dlsch_eNB[k][0]->harq_processes[0]->mcs), - num_pdcch_symbols); - - - // use the PMI from previous trial - if (DLSCH_alloc_pdu2_2D[0].tpmi == 5) { - PHY_vars_eNB->dlsch_eNB[0][0]->pmi_alloc = quantize_subband_pmi(&PHY_vars_UE->PHY_measurements,0); - PHY_vars_UE->dlsch_ue[0][0]->pmi_alloc = quantize_subband_pmi(&PHY_vars_UE->PHY_measurements,0); - - if (n_users>1) - PHY_vars_eNB->dlsch_eNB[1][0]->pmi_alloc = (PHY_vars_eNB->dlsch_eNB[0][0]->pmi_alloc ^ 0x1555); - - /* - if ((trials<10) && (round_eNB==0)) { - printf("tx PMI UE0 %x (pmi_feedback %d)\n",pmi2hex_2Ar1(PHY_vars_eNB->dlsch_eNB[0][0]->pmi_alloc),pmi_feedback); - if (transmission_mode ==5) - printf("tx PMI UE1 %x\n",pmi2hex_2Ar1(PHY_vars_eNB->dlsch_eNB[1][0]->pmi_alloc)); - } - */ - } - - if (dlsch_encoding(input_buffer[k], - &PHY_vars_eNB->lte_frame_parms, - num_pdcch_symbols, - PHY_vars_eNB->dlsch_eNB[k][0], - subframe)<0) - exit(-1); - - // printf("Did not Crash here 1\n"); - PHY_vars_eNB->dlsch_eNB[k][0]->rnti = n_rnti+k; - dlsch_scrambling(&PHY_vars_eNB->lte_frame_parms, - num_pdcch_symbols, - PHY_vars_eNB->dlsch_eNB[k][0], - coded_bits_per_codeword, - 0, - subframe<<1); - - if (n_frames==1) { - for (s=0; s<PHY_vars_eNB->dlsch_eNB[k][0]->harq_processes[0]->C; s++) { - if (s<PHY_vars_eNB->dlsch_eNB[k][0]->harq_processes[0]->Cminus) - Kr = PHY_vars_eNB->dlsch_eNB[k][0]->harq_processes[0]->Kminus; - else - Kr = PHY_vars_eNB->dlsch_eNB[k][0]->harq_processes[0]->Kplus; - - Kr_bytes = Kr>>3; - - for (i=0; i<Kr_bytes; i++) - printf("%d : (%x)\n",i,PHY_vars_eNB->dlsch_eNB[k][0]->harq_processes[0]->c[s][i]); - } - } - - // printf("Did not Crash here 2\n"); - - if (transmission_mode == 5) { - amp = (int16_t)(((int32_t)1024*ONE_OVER_SQRT2_Q15)>>15); - } else - amp = 1024; - - // if (k==1) - // amp=0; - re_allocated = dlsch_modulation(PHY_vars_eNB->lte_eNB_common_vars.txdataF[eNB_id], - amp, - subframe, - &PHY_vars_eNB->lte_frame_parms, - num_pdcch_symbols, - PHY_vars_eNB->dlsch_eNB[k][0]); - - // printf("Did not Crash here 3\n"); - if (trials==0 && round_eNB==0) - printf("RE count %d\n",re_allocated); - - if (num_layers>1) - re_allocated = dlsch_modulation(PHY_vars_eNB->lte_eNB_common_vars.txdataF[eNB_id], - 1024, - subframe, - &PHY_vars_eNB->lte_frame_parms, - num_pdcch_symbols, - PHY_vars_eNB->dlsch_eNB[k][1]); - } //n_users - - // printf("Did not Crash here 4\n"); - - generate_pilots(PHY_vars_eNB, - PHY_vars_eNB->lte_eNB_common_vars.txdataF[eNB_id], - 1024, - LTE_NUMBER_OF_SUBFRAMES_PER_FRAME); - - -#ifdef IFFT_FPGA - - if (n_frames==1) { - write_output("txsigF0.m","txsF0", PHY_vars_eNB->lte_eNB_common_vars.txdataF[0][0],300*nsymb*10,1,4); - //modif start UL - write_output("txsigF0_UE.m","txsF0_UE", &PHY_vars_UE->lte_ue_common_vars.txdataF[0][frame_parms->ofdm_symbol_size*nsymb*subframe_UL],frame_parms->ofdm_symbol_size*nsymb,1,1); - - //modif end UL - if (PHY_vars_eNB->lte_frame_parms.nb_antennas_tx>1) - write_output("txsigF1.m","txsF1", PHY_vars_eNB->lte_eNB_common_vars.txdataF[0][1],300*nsymb*10,1,4); - } - - // do table lookup and write results to txdataF2 - for (aa=0; aa<PHY_vars_eNB->lte_frame_parms.nb_antennas_tx; aa++) { - ind = 0; - - for (i=0; i<FRAME_LENGTH_COMPLEX_SAMPLES_NO_PREFIX; i++) - if (((i%512)>=1) && ((i%512)<=150)) { - txdataF2[aa][i] = ((int*)mod_table)[PHY_vars_eNB->lte_eNB_common_vars.txdataF[eNB_id][aa][ind++]]; - //modif start UL - txdataF2_UE[aa][i] = ((int*)mod_table)[PHY_vars_UE->lte_ue_common_vars.txdataF[aa][l++]]; - } - //modif end UL - else if ((i%512)>=362) { - txdataF2[aa][i] = ((int*)mod_table)[PHY_vars_eNB->lte_eNB_common_vars.txdataF[eNB_id][aa][ind++]]; - //modif start UL - txdataF2_UE[aa][i] = ((int*)mod_table)[PHY_vars_UE->lte_ue_common_vars.txdataF[aa][l++]]; - } - //modif end UL - else { - txdataF2[aa][i] = 0; - //modif start UL - txdataF2_UE[aa][i] = 0; - } - - //modif end UL - // printf("ind=%d\n",ind); - } - - if (n_frames==1) { - write_output("txsigF20.m","txsF20", txdataF2[0], FRAME_LENGTH_COMPLEX_SAMPLES_NO_PREFIX,1,1); - //modif start UL - write_output("txsigF20_UE.m","txsF20_UE", txdataF2_UE[0],FRAME_LENGTH_COMPLEX_SAMPLES_NO_PREFIX,1,1); - - //modif end UL - if (PHY_vars_eNB->lte_frame_parms.nb_antennas_tx>1) - write_output("txsigF21.m","txsF21", txdataF2[1], FRAME_LENGTH_COMPLEX_SAMPLES_NO_PREFIX,1,1); - } - - tx_lev = 0; - - for (aa=0; aa<PHY_vars_eNB->lte_frame_parms.nb_antennas_tx; aa++) { - if (frame_parms->Ncp == 1) - PHY_ofdm_mod(&txdataF2[aa][subframe*nsymb*PHY_vars_eNB->lte_frame_parms.ofdm_symbol_size], // input - &txdata[aa][subframe*PHY_vars_eNB->lte_frame_parms.samples_per_tti], // output - PHY_vars_eNB->lte_frame_parms.log2_symbol_size, // log2_fft_size - 2*nsymb,//NUMBER_OF_SYMBOLS_PER_FRAME, // number of symbols - PHY_vars_eNB->lte_frame_parms.nb_prefix_samples, // number of prefix samples - PHY_vars_eNB->lte_frame_parms.twiddle_ifft, // IFFT twiddle factors - PHY_vars_eNB->lte_frame_parms.rev, // bit-reversal permutation - CYCLIC_PREFIX); - else { - normal_prefix_mod(&txdataF2[aa][subframe*nsymb*PHY_vars_eNB->lte_frame_parms.ofdm_symbol_size], - &txdata[aa][subframe*PHY_vars_eNB->lte_frame_parms.samples_per_tti], - 2*nsymb, - frame_parms); - } - - //modif start UL - for (aa=0; aa<1; aa++) { - if (frame_parms->Ncp == 1) - PHY_ofdm_mod(txdataF2_UE[aa], // input - txdata_UE[aa], // output - PHY_vars_UE->lte_frame_parms.log2_symbol_size, // log2_fft_size - nsymb, // number of symbols - PHY_vars_UE->lte_frame_parms.nb_prefix_samples, // number of prefix samples - PHY_vars_UE->lte_frame_parms.twiddle_ifft, // IFFT twiddle factors - PHY_vars_UE->lte_frame_parms.rev, // bit-reversal permutation - CYCLIC_PREFIX); - else - normal_prefix_mod(txdataF2_UE[aa],txdata_UE[aa],nsymb,frame_parms); - - - } - - //modif end UL - - tx_lev += signal_energy(&txdata[aa][(PHY_vars_eNB->lte_frame_parms.ofdm_symbol_size+PHY_vars_eNB->lte_frame_parms.nb_prefix_samples0)], - OFDM_SYMBOL_SIZE_COMPLEX_SAMPLES); - } - - -#else //IFFT_FPGA - - if (n_frames==1) { - write_output("txsigF0.m","txsF0", PHY_vars_eNB->lte_eNB_common_vars.txdataF[eNB_id][0],FRAME_LENGTH_COMPLEX_SAMPLES_NO_PREFIX,1,1); - //modif start UL - write_output("txsigF0_UE.m","txsF0_UE", &PHY_vars_UE->lte_ue_common_vars.txdataF[0][512*nsymb*subframe_UL],512*nsymb,1,1); - - //modif end UL - if (PHY_vars_eNB->lte_frame_parms.nb_antennas_tx>1) - write_output("txsigF1.m","txsF1", PHY_vars_eNB->lte_eNB_common_vars.txdataF[eNB_id][1],FRAME_LENGTH_COMPLEX_SAMPLES_NO_PREFIX,1,1); - } - - tx_lev = 0; - - for (aa=0; aa<PHY_vars_eNB->lte_frame_parms.nb_antennas_tx; aa++) { - if (frame_parms->Ncp == 1) - PHY_ofdm_mod(&PHY_vars_eNB->lte_eNB_common_vars.txdataF[eNB_id][aa][subframe*nsymb*PHY_vars_eNB->lte_frame_parms.ofdm_symbol_size], // input - &txdata[aa][subframe*PHY_vars_eNB->lte_frame_parms.samples_per_tti], // output - PHY_vars_eNB->lte_frame_parms.log2_symbol_size, // log2_fft_size - 2*nsymb,//NUMBER_OF_SYMBOLS_PER_FRAME, // number of symbols - PHY_vars_eNB->lte_frame_parms.nb_prefix_samples, // number of prefix samples - PHY_vars_eNB->lte_frame_parms.twiddle_ifft, // IFFT twiddle factors - PHY_vars_eNB->lte_frame_parms.rev, // bit-reversal permutation - CYCLIC_PREFIX); - else { - normal_prefix_mod(&PHY_vars_eNB->lte_eNB_common_vars.txdataF[eNB_id][aa][subframe*nsymb*PHY_vars_eNB->lte_frame_parms.ofdm_symbol_size], - &txdata[aa][subframe*PHY_vars_eNB->lte_frame_parms.samples_per_tti], - 2*nsymb, - frame_parms); - } - - tx_lev += signal_energy(&txdata[aa][subframe*PHY_vars_eNB->lte_frame_parms.samples_per_tti], - PHY_vars_eNB->lte_frame_parms.samples_per_tti); - } - - //modif start UL - tx_lev_UE=0; - - for (aa=0; aa<1; aa++) { - if (frame_parms->Ncp == 1) - PHY_ofdm_mod(&PHY_vars_UE->lte_ue_common_vars.txdataF[aa][subframe_UL*nsymb*OFDM_SYMBOL_SIZE_COMPLEX_SAMPLES_NO_PREFIX], // input - &txdata_UE[aa][PHY_vars_eNB->lte_frame_parms.samples_per_tti*subframe_UL], // output - PHY_vars_UE->lte_frame_parms.log2_symbol_size, // log2_fft_size - nsymb, // number of symbols - PHY_vars_UE->lte_frame_parms.nb_prefix_samples, // number of prefix samples - PHY_vars_UE->lte_frame_parms.twiddle_ifft, // IFFT twiddle factors - PHY_vars_UE->lte_frame_parms.rev, // bit-reversal permutation - CYCLIC_PREFIX); - else - normal_prefix_mod(&PHY_vars_UE->lte_ue_common_vars.txdataF[aa][subframe_UL*nsymb*OFDM_SYMBOL_SIZE_COMPLEX_SAMPLES_NO_PREFIX], - &txdata_UE[aa][PHY_vars_eNB->lte_frame_parms.samples_per_tti*subframe_UL], - nsymb, - frame_parms); - -#ifndef OFDMA_ULSCH - apply_7_5_kHz(PHY_vars_UE,subframe_UL<<1); - apply_7_5_kHz(PHY_vars_UE,1+(subframe_UL<<1)); -#endif - - tx_lev_UE += signal_energy(&txdata_UE[aa][PHY_vars_eNB->lte_frame_parms.samples_per_tti*subframe_UL], - OFDM_SYMBOL_SIZE_COMPLEX_SAMPLES); - } - - //modif end UL -#endif //IFFT_FPGA - - tx_lev_dB = (unsigned int) dB_fixed(tx_lev); - //printf("tx_lev = %d (%d dB)\n",tx_lev,tx_lev_dB); - - if (n_frames==1) { - write_output("txsig0.m","txs0", txdata[0],FRAME_LENGTH_COMPLEX_SAMPLES,1,1); - } - - } //input_fd - else { // Read signal from file - i=0; - - while (!feof(input_fd)) { - fscanf(input_fd,"%s %s",input_val_str,input_val_str2); - - if ((i%4)==0) { - ((short*)txdata[0])[i/2] = (short)((1<<15)*strtod(input_val_str,NULL)); - ((short*)txdata[0])[(i/2)+1] = (short)((1<<15)*strtod(input_val_str2,NULL)); - - if ((i/4)<100) - printf("sample %d => %e + j%e (%d +j%d)\n",i/4,strtod(input_val_str,NULL),strtod(input_val_str2,NULL),((short*)txdata[0])[i/4],((short*)txdata[0])[(i/4)+1]);//1,input_val2,); - } - - i++; - - if (i>(FRAME_LENGTH_SAMPLES)) - break; - } - - printf("Read in %d samples\n",i/4); - write_output("txsig0.m","txs0", txdata[0],2*frame_parms->samples_per_tti,1,1); - // write_output("txsig1.m","txs1", txdata[1],FRAME_LENGTH_COMPLEX_SAMPLES,1,1); - tx_lev = signal_energy(&txdata[0][0], - OFDM_SYMBOL_SIZE_COMPLEX_SAMPLES); - tx_lev_dB = (unsigned int) dB_fixed(tx_lev); - }// else read from file - - //modif start UL - tx_lev_UE_dB = (unsigned int) dB_fixed(tx_lev_UE); - - if (n_frames==1) { - write_output("txsig0_UE.m","txs0_UE", txdata_UE[0],FRAME_LENGTH_COMPLEX_SAMPLES,1,1); - } - - // multipath channel - - for (i=0; i<PHY_vars_eNB->lte_frame_parms.samples_per_tti; i++) { - for (aa=0; aa<1; aa++) { - if (awgn_flag == 0) { - s_re_UE[aa][i] = ((double)(((short *)&txdata_UE[aa][PHY_vars_eNB->lte_frame_parms.samples_per_tti*subframe_UL]))[(i<<1)]); - s_im_UE[aa][i] = ((double)(((short *)&txdata_UE[aa][PHY_vars_eNB->lte_frame_parms.samples_per_tti*subframe_UL]))[(i<<1)+1]); - } else { - r_re_UE[aa][i] = ((double)(((short *)&txdata_UE[aa][PHY_vars_eNB->lte_frame_parms.samples_per_tti*subframe_UL]))[(i<<1)]); - r_im_UE[aa][i] = ((double)(((short *)&txdata_UE[aa][PHY_vars_eNB->lte_frame_parms.samples_per_tti*subframe_UL]))[(i<<1)+1]); - } - } - } - - //printf("PHY_vars_eNB->lte_frame_parms.samples_per_tti = %d\n", PHY_vars_eNB->lte_frame_parms.samples_per_tti); - - - // filtre RF tx -> s_re_UE - //UL - if (decalibration == 1) { - for (aa=0; aa<PHY_vars_UE->lte_frame_parms.nb_antennas_tx; aa++) { - real_fir(s_re_UE[aa], s_im_UE[aa], s_re_out, s_im_out, s_coeffs_UE, s_ord_fir_UE, PHY_vars_eNB->lte_frame_parms.samples_per_tti); - - for (i=0; i<PHY_vars_eNB->lte_frame_parms.samples_per_tti; i++) { - s_re_UE[aa][i] = s_re_out[i]; - s_im_UE[aa][i] = s_im_out[i]; - } - } - } - - //UL - - if (phase_offset == 1) { - for (aa=0; aa<PHY_vars_UE->lte_frame_parms.nb_antennas_rx; aa++) { - //printf("phase_in_UL avant = %f\n", phase_in_UL); - phase_offsets(s_re_UE[aa], s_im_UE[aa], s_re_out, s_im_out, PHY_vars_eNB->lte_frame_parms.samples_per_tti, &phase_in_UL, phase_inc_UL, -1); - - for (i=0; i<PHY_vars_eNB->lte_frame_parms.samples_per_tti; i++) { - s_re_UE[aa][i] = s_re_out[i]; - s_im_UE[aa][i] = s_im_out[i]; - } - - //printf("phase_in_UL apres = %f\n", phase_in_UL); - } - } - - //modif end UL - // printf("Copying tx ..., nsymb %d (n_tx %d), awgn %d\n",nsymb,PHY_vars_eNB->lte_frame_parms.nb_antennas_tx,awgn_flag); - for (i=0; i<2*nsymb*OFDM_SYMBOL_SIZE_COMPLEX_SAMPLES; i++) { - for (aa=0; aa<1; aa++) { //PHY_vars_eNB->lte_frame_parms.nb_antennas_tx - if (awgn_flag == 0) { - s_re[aa][i] = ((double)(((short *)txdata[aa]))[(2*subframe*PHY_vars_UE->lte_frame_parms.samples_per_tti) + (i<<1)]); - s_im[aa][i] = ((double)(((short *)txdata[aa]))[(2*subframe*PHY_vars_UE->lte_frame_parms.samples_per_tti) +(i<<1)+1]); - } else { - for (aarx=0; aarx<PHY_vars_UE->lte_frame_parms.nb_antennas_rx; aarx++) { - if (aa==0) { - r_re[aarx][i] = ((double)(((short *)txdata[aa]))[(2*subframe*PHY_vars_UE->lte_frame_parms.samples_per_tti) +(i<<1)]); - r_im[aarx][i] = ((double)(((short *)txdata[aa]))[(2*subframe*PHY_vars_UE->lte_frame_parms.samples_per_tti) +(i<<1)+1]); - } else { - r_re[aarx][i] += ((double)(((short *)txdata[aa]))[(2*subframe*PHY_vars_UE->lte_frame_parms.samples_per_tti) +(i<<1)]); - r_im[aarx][i] += ((double)(((short *)txdata[aa]))[(2*subframe*PHY_vars_UE->lte_frame_parms.samples_per_tti) +(i<<1)+1]); - } - - } - } - } - } - - // filtre RF tx -> s_re - if (decalibration == 1) { - for (aa=0; aa<PHY_vars_eNB->lte_frame_parms.nb_antennas_tx; aa++) { - real_fir(s_re[aa], s_im[aa], s_re_out, s_im_out, s_coeffs_eNB, s_ord_fir_eNB, 2*nsymb*OFDM_SYMBOL_SIZE_COMPLEX_SAMPLES); - - for (i=0; i<2*nsymb*OFDM_SYMBOL_SIZE_COMPLEX_SAMPLES; i++) { - s_re[aa][i] = s_re_out[i]; - s_im[aa][i] = s_im_out[i]; - } - } - } - - // n0_pow_dB = tx_lev_dB + 10*log10(512/(NB_RB*12)) + SNR; - // generate new channel if pmi_feedback==0, otherwise hold channel - if(abstx) { - if (trials==0 && round_eNB==0) { - if (awgn_flag == 0) { - if(SNR==snr0) { - if(pmi_feedback==0) - multipath_channel(eNB2UE,s_re,s_im,r_re,r_im, - 2*nsymb*OFDM_SYMBOL_SIZE_COMPLEX_SAMPLES,1); - else - multipath_channel(eNB2UE,s_re,s_im,r_re,r_im, - 2*nsymb*OFDM_SYMBOL_SIZE_COMPLEX_SAMPLES,1);//b - } else { - multipath_channel(eNB2UE,s_re,s_im,r_re,r_im, - 2*nsymb*OFDM_SYMBOL_SIZE_COMPLEX_SAMPLES,1); - } - - freq_channel(eNB2UE, 25,51); - snr=pow(10.0,.1*SNR); - fprintf(csv_fd,"%f,",SNR); - - for (u=0; u<50; u++) { - abs_channel = (eNB2UE->chF[0][u].x*eNB2UE->chF[0][u].x + eNB2UE->chF[0][u].y*eNB2UE->chF[0][u].y); - - if(transmission_mode==5) { - fprintf(csv_fd,"%e,",abs_channel); - } else { - pilot_sinr = 10*log10(snr*abs_channel); - fprintf(csv_fd,"%e,",pilot_sinr); - } - } - } - } - - else { - if (awgn_flag == 0) { - multipath_channel(eNB2UE,s_re,s_im,r_re,r_im, - 2*nsymb*OFDM_SYMBOL_SIZE_COMPLEX_SAMPLES,1); - } - } - } - - else { //ABStraction - if (awgn_flag == 0) { - - if (pmi_feedback==0) { - if (trials<n_K-1) - multipath_channel(eNB2UE,s_re,s_im,r_re,r_im, - 2*nsymb*OFDM_SYMBOL_SIZE_COMPLEX_SAMPLES,1);//b - else - multipath_channel(eNB2UE,s_re,s_im,r_re,r_im, - 2*nsymb*OFDM_SYMBOL_SIZE_COMPLEX_SAMPLES,0);//b - } else - multipath_channel(eNB2UE,s_re,s_im,r_re,r_im, - 2*nsymb*OFDM_SYMBOL_SIZE_COMPLEX_SAMPLES,1);//b - } - }//ABStraction - - //DL - - if (phase_offset == 1) { - for (aa=0; aa<PHY_vars_UE->lte_frame_parms.nb_antennas_rx; aa++) { - //printf("phase_in_DL avant = %f\n", phase_in_DL); - phase_offsets(r_re[aa], r_im[aa], r_re_out, r_im_out, 2*nsymb*OFDM_SYMBOL_SIZE_COMPLEX_SAMPLES, &phase_in_DL, phase_inc_DL, 1); - - for (i=0; i<2*nsymb*OFDM_SYMBOL_SIZE_COMPLEX_SAMPLES; i++) { - r_re[aa][i] = r_re_out[i]; - r_im[aa][i] = r_im_out[i]; - } - - //printf("phase_in_DL apres = %f\n", phase_in_DL); - } - } - - // filtre RF rx -> r_re - if (decalibration == 1) { - for (aa=0; aa<PHY_vars_UE->lte_frame_parms.nb_antennas_rx; aa++) { - real_fir(r_re[aa], r_im[aa], r_re_out, r_im_out, r_coeffs_eNB, r_ord_fir_eNB, 2*nsymb*OFDM_SYMBOL_SIZE_COMPLEX_SAMPLES); - - for (i=0; i<2*nsymb*OFDM_SYMBOL_SIZE_COMPLEX_SAMPLES; i++) { - r_re[aa][i] = r_re_out[i]; - r_im[aa][i] = r_im_out[i]; - } - } - } - - sigma2_dB = 10*log10((double)tx_lev) +10*log10(PHY_vars_eNB->lte_frame_parms.ofdm_symbol_size/(NB_RB*12)) - SNR; - - //AWGN - sigma2 = pow(10,sigma2_dB/10); - - // n0_pow_dB = tx_lev_dB + 10*log10(512/(NB_RB*12)) + SNR; - // printf("Sigma2 %f (sigma2_dB %f)\n",sigma2,sigma2_dB); - if (pmi_feedback==0) { - for (i=0; i<2*nsymb*OFDM_SYMBOL_SIZE_COMPLEX_SAMPLES; i++) { - for (aa=0; aa<PHY_vars_eNB->lte_frame_parms.nb_antennas_rx; aa++) { - // printf("s_re[0][%d]=> %f , r_re[0][%d]=> %f\n",i,s_re[aa][i],i,r_re[aa][i]); - ((short*) PHY_vars_UE->lte_ue_common_vars.rxdata[aa])[(2*subframe*PHY_vars_UE->lte_frame_parms.samples_per_tti)+2*i] = - (short) (r_re[aa][i] + sqrt(sigma2/2)*gaussdouble(0.0,1.0)); - ((short*) PHY_vars_UE->lte_ue_common_vars.rxdata[aa])[(2*subframe*PHY_vars_UE->lte_frame_parms.samples_per_tti)+2*i+1] = - (short) (r_im[aa][i] + (iqim*r_re[aa][i]) + sqrt(sigma2/2)*gaussdouble(0.0,1.0)); - } - } - } else { - for (i=0; i<2*nsymb*OFDM_SYMBOL_SIZE_COMPLEX_SAMPLES; i++) { - for (aa=0; aa<PHY_vars_eNB->lte_frame_parms.nb_antennas_rx; aa++) { - // printf("s_re[0][%d]=> %f , r_re[0][%d]=> %f\n",i,s_re[aa][i],i,r_re[aa][i]); - ((short*) PHY_vars_UE->lte_ue_common_vars.rxdata[aa])[(2*subframe*PHY_vars_UE->lte_frame_parms.samples_per_tti)+2*i] = (short) (r_re[aa][i]); - ((short*) PHY_vars_UE->lte_ue_common_vars.rxdata[aa])[(2*subframe*PHY_vars_UE->lte_frame_parms.samples_per_tti)+2*i+1] = (short) (r_im[aa][i]); - } - } - } - - //modif start UL - if (awgn_flag == 0) { - if (trials<n_K-1) - multipath_channel(UE2eNB,s_re_UE,s_im_UE,r_re_UE,r_im_UE, - PHY_vars_eNB->lte_frame_parms.samples_per_tti,1);//b - else - multipath_channel(UE2eNB,s_re_UE,s_im_UE,r_re_UE,r_im_UE, - PHY_vars_eNB->lte_frame_parms.samples_per_tti,0);//b - - //multipath_channel(UE2eNB,s_re_UE,s_im_UE,r_re_UE,r_im_UE, - // PHY_vars_eNB->lte_frame_parms.samples_per_tti,0);//b - } - - //(double)tx_lev_dB - (SNR+sigma2_UE_dB)); - - // filtre RF rx -> r_re - if (decalibration == 1) { - for (aa=0; aa<PHY_vars_eNB->lte_frame_parms.nb_antennas_rx; aa++) { - real_fir(r_re_UE[aa], r_im_UE[aa], r_re_out, r_im_out, r_coeffs_UE, r_ord_fir_UE, PHY_vars_eNB->lte_frame_parms.samples_per_tti); - - for (i=0; i<PHY_vars_eNB->lte_frame_parms.samples_per_tti; i++) { - r_re_UE[aa][i] = r_re_out[i]; - r_im_UE[aa][i] = r_im_out[i]; - } - } - } - - sigma2_UE_dB = tx_lev_UE_dB +10*log10(PHY_vars_UE->lte_frame_parms.ofdm_symbol_size/(PHY_vars_UE->lte_frame_parms.N_RB_DL*12)) - SNR; - - //AWGN - sigma2_UE = pow(10,sigma2_UE_dB/10); - - for (i=0; i<PHY_vars_eNB->lte_frame_parms.samples_per_tti; i++) { - for (aa=0; aa<PHY_vars_eNB->lte_frame_parms.nb_antennas_rx; aa++) { - ((short*) &PHY_vars_eNB->lte_eNB_common_vars.rxdata[0][aa][PHY_vars_eNB->lte_frame_parms.samples_per_tti*subframe_UL])[2*i] = (short) (r_re_UE[aa][i] + sqrt(sigma2_UE/2)*gaussdouble(0.0,1.0)); - ((short*) &PHY_vars_eNB->lte_eNB_common_vars.rxdata[0][aa][PHY_vars_eNB->lte_frame_parms.samples_per_tti*subframe_UL])[2*i+1] = (short) (r_im_UE[aa][i] + (iqim*r_re_UE[aa][i]) + sqrt( - sigma2_UE/2)*gaussdouble(0.0,1.0)); - } - } - - //modif end UL - - // lte_sync_time_init(PHY_vars_eNB->lte_frame_parms,lte_ue_common_vars); - // lte_sync_time(lte_ue_common_vars->rxdata, PHY_vars_eNB->lte_frame_parms); - // lte_sync_time_free(); - - - if (n_frames==1) { - printf("RX level in null symbol %d\n",dB_fixed(signal_energy(&PHY_vars_UE->lte_ue_common_vars.rxdata[0][160+OFDM_SYMBOL_SIZE_COMPLEX_SAMPLES],OFDM_SYMBOL_SIZE_COMPLEX_SAMPLES/2))); - printf("RX level in data symbol %d\n",dB_fixed(signal_energy(&PHY_vars_UE->lte_ue_common_vars.rxdata[0][160+(2*OFDM_SYMBOL_SIZE_COMPLEX_SAMPLES)],OFDM_SYMBOL_SIZE_COMPLEX_SAMPLES/2))); - printf("rx_level Null symbol %f\n",10*log10(signal_energy_fp(r_re,r_im,1,OFDM_SYMBOL_SIZE_COMPLEX_SAMPLES/2,256+(OFDM_SYMBOL_SIZE_COMPLEX_SAMPLES)))); - printf("rx_level data symbol %f\n",10*log10(signal_energy_fp(r_re,r_im,1,OFDM_SYMBOL_SIZE_COMPLEX_SAMPLES/2,256+(2*OFDM_SYMBOL_SIZE_COMPLEX_SAMPLES)))); - //modif start UL - printf("rx__UE_level Null symbol %f\n",10*log10(signal_energy((int*)&PHY_vars_eNB->lte_eNB_common_vars.rxdata[0][0][160+(PHY_vars_eNB->lte_frame_parms.samples_per_tti*(1+subframe_UL))], - OFDM_SYMBOL_SIZE_COMPLEX_SAMPLES/2))); - printf("rx_UE_level data symbol %f\n",10*log10(signal_energy((int*)&PHY_vars_eNB->lte_eNB_common_vars.rxdata[0][0][160+(PHY_vars_eNB->lte_frame_parms.samples_per_tti*subframe_UL)], - OFDM_SYMBOL_SIZE_COMPLEX_SAMPLES/2))); - //modif end UL - } - - - i_mod = get_Qm(mcs_eNB); - - // Inner receiver scheduling for 3 slots - for (Ns=(2*subframe); Ns<((2*subframe)+3); Ns++) { - for (l=0; l<pilot2; l++) { - if (n_frames==1) - printf("Ns %d, l %d\n",Ns,l); - - slot_fep(PHY_vars_UE, - l, - Ns%20, - 0, - 0); - -#ifdef PERFECT_CE - - if (awgn_flag==0) { - // fill in perfect channel estimates - freq_channel(eNB2UE,PHY_vars_UE->lte_frame_parms.N_RB_DL,301); - - //write_output("channel.m","ch",desc1->ch[0],desc1->channel_length,1,8); - //write_output("channelF.m","chF",desc1->chF[0],nb_samples,1,8); - for(k=0; k<NUMBER_OF_eNB_MAX; k++) { - for(aa=0; aa<frame_parms->nb_antennas_tx; aa++) { - for (aarx=0; aarx<frame_parms->nb_antennas_rx; aarx++) { - for (i=0; i<frame_parms->N_RB_DL*12; i++) { - ((int16_t *) PHY_vars_UE->lte_ue_common_vars.dl_ch_estimates[k][(aa<<1)+aarx])[2*i+(l*frame_parms->ofdm_symbol_size+LTE_CE_FILTER_LENGTH)*2]=(int16_t)( - eNB2UE->chF[aarx+(aa*frame_parms->nb_antennas_rx)][i].x*AMP/2); - ((int16_t *) PHY_vars_UE->lte_ue_common_vars.dl_ch_estimates[k][(aa<<1)+aarx])[2*i+1+(l*frame_parms->ofdm_symbol_size+LTE_CE_FILTER_LENGTH)*2]=(int16_t)( - eNB2UE->chF[aarx+(aa*frame_parms->nb_antennas_rx)][i].y*AMP/2) ; - } - } - } - } - } else { - for(aa=0; aa<frame_parms->nb_antennas_tx; aa++) { - for (aarx=0; aarx<frame_parms->nb_antennas_rx; aarx++) { - for (i=0; i<frame_parms->N_RB_DL*12; i++) { - ((int16_t *) PHY_vars_UE->lte_ue_common_vars.dl_ch_estimates[0][(aa<<1)+aarx])[2*i+(l*frame_parms->ofdm_symbol_size+LTE_CE_FILTER_LENGTH)*2]=AMP/2; - ((int16_t *) PHY_vars_UE->lte_ue_common_vars.dl_ch_estimates[0][(aa<<1)+aarx])[2*i+1+(l*frame_parms->ofdm_symbol_size+LTE_CE_FILTER_LENGTH)*2]=0/2; - } - } - } - } - -#endif - - - if ((Ns==(2+(2*subframe))) && (l==0)) { - lte_ue_measurements(PHY_vars_UE, - subframe*PHY_vars_UE->lte_frame_parms.samples_per_tti, - 1, - 0); - - if (transmission_mode==5 || transmission_mode==6) { - if (pmi_feedback==1) { - pmi_feedback= 0; - // printf("measured PMI %x\n",pmi2hex_2Ar1(quantize_subband_pmi(&PHY_vars_UE->PHY_measurements,0))); - goto PMI_FEEDBACK; - } - } - - } - - - if ((Ns==(2*subframe)) && (l==pilot1)) {// process symbols 0,1,2 - - if (dci_flag == 1) { - rx_pdcch(&PHY_vars_UE->lte_ue_common_vars, - PHY_vars_UE->lte_ue_pdcch_vars, - &PHY_vars_UE->lte_frame_parms, - subframe, - 0, - (PHY_vars_UE->lte_frame_parms.mode1_flag == 1) ? SISO : ALAMOUTI, - 0); - - // overwrite number of pdcch symbols - PHY_vars_UE->lte_ue_pdcch_vars[0]->num_pdcch_symbols = num_pdcch_symbols; - - dci_cnt = dci_decoding_procedure(PHY_vars_UE, - dci_alloc_rx, - eNB_id, - subframe, - SI_RNTI, - RA_RNTI); - //printf("dci_cnt %d\n",dci_cnt); - - if (dci_cnt==0) { - dlsch_active = 0; - - if (round_eNB==0) { - dci_errors++; - round_eNB=5; - errs_eNB[0]++; - round_trials_eNB[0]++; - // printf("DCI error trial %d errs[0] %d\n",trials,errs[0]); - } - - // for (i=1;i<=round_eNB;i++) - // round_trials_eNB[i]--; - // round_eNB=5; - } - - for (i=0; i<dci_cnt; i++) { - //printf("Generating dlsch parameters for RNTI %x\n",dci_alloc_rx[i].rnti); - if ((dci_alloc_rx[i].rnti == n_rnti) && - (generate_ue_dlsch_params_from_dci(0, - dci_alloc_rx[i].dci_pdu, - dci_alloc_rx[i].rnti, - dci_alloc_rx[i].format, - PHY_vars_UE->dlsch_ue[0], - &PHY_vars_UE->lte_frame_parms, - SI_RNTI, - RA_RNTI, - P_RNTI)==0)) { - //dump_dci(&PHY_vars_UE->lte_frame_parms,&dci_alloc_rx[i]); - coded_bits_per_codeword = get_G(&PHY_vars_eNB->lte_frame_parms, - PHY_vars_UE->dlsch_ue[0][0]->nb_rb, - PHY_vars_UE->dlsch_ue[0][0]->rb_alloc, - get_Qm(PHY_vars_UE->dlsch_ue[0][0]->harq_processes[PHY_vars_UE->dlsch_ue[0][0]->current_harq_pid]->mcs), - PHY_vars_UE->lte_ue_pdcch_vars[0]->num_pdcch_symbols, - subframe); - dlsch_active = 1; - } else { - dlsch_active = 0; - - if (round_eNB==0) { - dci_errors++; - errs_eNB[0]++; - round_trials_eNB[0]++; - - if (n_frames==1) { - printf("DCI misdetection trial %d\n",trials); - round_eNB=5; - } - } - } - } - } // if dci_flag==1 - else { //dci_flag == 0 - - PHY_vars_UE->lte_ue_pdcch_vars[0]->crnti = n_rnti; - PHY_vars_UE->lte_ue_pdcch_vars[0]->num_pdcch_symbols = num_pdcch_symbols; - - generate_ue_dlsch_params_from_dci(0, - &DLSCH_alloc_pdu2_2D[0], - C_RNTI, - format2_2D_M10PRB, - PHY_vars_UE->dlsch_ue[0], - &PHY_vars_UE->lte_frame_parms, - SI_RNTI, - RA_RNTI, - P_RNTI); - dlsch_active = 1; - } // if dci_flag == 1 - } - - if (dlsch_active == 1) { - if ((Ns==(1+(2*subframe))) && (l==0)) {// process symbols 3,4,5 - - for (m=PHY_vars_UE->lte_ue_pdcch_vars[0]->num_pdcch_symbols; - m<pilot2; - m++) { - if (rx_dlsch(&PHY_vars_UE->lte_ue_common_vars, - PHY_vars_UE->lte_ue_dlsch_vars, - &PHY_vars_UE->lte_frame_parms, - eNB_id, - eNB_id_i, - PHY_vars_UE->dlsch_ue[0], - subframe, - m, - (m==PHY_vars_UE->lte_ue_pdcch_vars[0]->num_pdcch_symbols)?1:0, - dual_stream_UE, - &PHY_vars_UE->PHY_measurements, - i_mod)==-1) { - - dlsch_active = 0; - break; - } - } - - } - - if ((Ns==(1+(2*subframe))) && (l==pilot1)) {// process symbols 6,7,8 - - for (m=pilot2; - m<pilot3; - m++) - if (rx_dlsch(&PHY_vars_UE->lte_ue_common_vars, - PHY_vars_UE->lte_ue_dlsch_vars, - &PHY_vars_UE->lte_frame_parms, - eNB_id, - eNB_id_i, - PHY_vars_UE->dlsch_ue[0], - subframe, - m, - 0, - dual_stream_UE, - &PHY_vars_UE->PHY_measurements, - i_mod)==-1) { - dlsch_active=0; - break; - } - } - - if ((Ns==(2+(2*subframe))) && (l==0)) // process symbols 10,11, do deinterleaving for TTI - for (m=pilot3; - m<PHY_vars_UE->lte_frame_parms.symbols_per_tti; - m++) - if (rx_dlsch(&PHY_vars_UE->lte_ue_common_vars, - PHY_vars_UE->lte_ue_dlsch_vars, - &PHY_vars_UE->lte_frame_parms, - eNB_id, - eNB_id_i, - PHY_vars_UE->dlsch_ue[0], - subframe, - m, - 0, - dual_stream_UE, - &PHY_vars_UE->PHY_measurements, - i_mod)==-1) { - dlsch_active=0; - break; - } - - //modif start - //Save the channel estimate - if (trials<=n_K) { - do_quantization(PHY_vars_UE, - nsymb, - pilot1-1, - quant_v, - dl_ch_estimates, - eNB_id, - dec_f); - } - - /* do_bin(dl_ch_estimates, - dl_ch_estimates_length, - input_buffer_UE, - dec_f); - write_output("buffer1.m","buffer", input_buffer_UE,dl_ch_estimates_length*quant,1,4); - exit(-1);*/ - - - //modif end - - //if ((n_frames==1) && (Ns==(2+(2*subframe))) && (l==0)) {//b - if ((SNR==snr0) && (llb==0)) { - llb=1; - - write_output("ch0enb.m","ch0",eNB2UE->ch[0],eNB2UE->channel_length,1,8); - write_output("ch0ue.m","ch0",UE2eNB->ch[0],UE2eNB->channel_length,1,8); - - if (PHY_vars_eNB->lte_frame_parms.nb_antennas_tx>1) - write_output("ch1.m","ch1",eNB2UE->ch[PHY_vars_eNB->lte_frame_parms.nb_antennas_rx],eNB2UE->channel_length,1,8); - - //***********************common vars - write_output("rxsig0.m","rxs0", &PHY_vars_UE->lte_ue_common_vars.rxdata[0][0],10*PHY_vars_UE->lte_frame_parms.samples_per_tti,1,1); - write_output("rxsigF0.m","rxsF0", &PHY_vars_UE->lte_ue_common_vars.rxdataF[0][0],2*PHY_vars_UE->lte_frame_parms.ofdm_symbol_size*nsymb,2,1); - - if (PHY_vars_UE->lte_frame_parms.nb_antennas_rx>1) { - write_output("rxsig1.m","rxs1", PHY_vars_UE->lte_ue_common_vars.rxdata[1],PHY_vars_UE->lte_frame_parms.samples_per_tti,1,1); - write_output("rxsigF1.m","rxsF1", PHY_vars_UE->lte_ue_common_vars.rxdataF[1],2*PHY_vars_UE->lte_frame_parms.ofdm_symbol_size*nsymb,2,1); - } - - write_output("dlsch00_ch0.m","dl00_ch0", - &(PHY_vars_UE->lte_ue_common_vars.dl_ch_estimates[eNB_id][0][0]), - PHY_vars_UE->lte_frame_parms.ofdm_symbol_size*nsymb,1,0); - - - - if (PHY_vars_UE->lte_frame_parms.nb_antennas_rx>1) - write_output("dlsch01_ch0.m","dl01_ch0", - &(PHY_vars_UE->lte_ue_common_vars.dl_ch_estimates[eNB_id][1][0]), - PHY_vars_UE->lte_frame_parms.ofdm_symbol_size*nsymb/2,1,1); - - if (PHY_vars_eNB->lte_frame_parms.nb_antennas_tx>1) - write_output("dlsch10_ch0.m","dl10_ch0", - &(PHY_vars_UE->lte_ue_common_vars.dl_ch_estimates[eNB_id][2][0]), - PHY_vars_UE->lte_frame_parms.ofdm_symbol_size*nsymb/2,1,1); - - if ((PHY_vars_UE->lte_frame_parms.nb_antennas_rx>1) && (PHY_vars_eNB->lte_frame_parms.nb_antennas_tx>1)) - write_output("dlsch11_ch0.m","dl11_ch0", - &(PHY_vars_UE->lte_ue_common_vars.dl_ch_estimates[eNB_id][3][0]), - PHY_vars_UE->lte_frame_parms.ofdm_symbol_size*nsymb/2,1,1); - - // exit(-1); - //dlsch_vars - dump_dlsch2(PHY_vars_UE,eNB_id,coded_bits_per_codeword); - dump_dlsch2(PHY_vars_UE,eNB_id_i,coded_bits_per_codeword); - write_output("dlsch_e.m","e",PHY_vars_eNB->dlsch_eNB[0][0]->e,coded_bits_per_codeword,1,4); - - //pdcch_vars - write_output("pdcchF0_ext.m","pdcchF_ext", PHY_vars_UE->lte_ue_pdcch_vars[eNB_id]->rxdataF_ext[0],2*3*PHY_vars_UE->lte_frame_parms.ofdm_symbol_size,1,1); - write_output("pdcch00_ch0_ext.m","pdcch00_ch0_ext",PHY_vars_UE->lte_ue_pdcch_vars[eNB_id]->dl_ch_estimates_ext[0],300*3,1,1); - - write_output("pdcch_rxF_comp0.m","pdcch0_rxF_comp0",PHY_vars_UE->lte_ue_pdcch_vars[eNB_id]->rxdataF_comp[0],4*300,1,1); - write_output("pdcch_rxF_llr.m","pdcch_llr",PHY_vars_UE->lte_ue_pdcch_vars[eNB_id]->llr,2400,1,4); - - } - - } - } - } - - // calculate uncoded BLER - uncoded_ber=0; - - for (i=0; i<coded_bits_per_codeword; i++) - if (PHY_vars_eNB->dlsch_eNB[0][0]->e[i] != (PHY_vars_UE->lte_ue_dlsch_vars[0]->llr[0][i]<0)) { - uncoded_ber_bit[i] = 1; - uncoded_ber++; - } else - uncoded_ber_bit[i] = 0; - - uncoded_ber/=coded_bits_per_codeword; - avg_ber += uncoded_ber; - - //imran - if(abstx) { - if (trials<10 && round_eNB==0 && transmission_mode==5) { - for (iii=0; iii<NB_RB; iii++) { - //fprintf(csv_fd, "%d, %d", (PHY_vars_UE->lte_ue_dlsch_vars[eNB_id]->pmi_ext[iii]),(PHY_vars_UE->lte_ue_dlsch_vars[eNB_id_i]->pmi_ext[iii])); - msg(" %x",(PHY_vars_UE->lte_ue_dlsch_vars[eNB_id]->pmi_ext[iii])); - // msg("Opposite Extracted pmi %x\n",(PHY_vars_UE->lte_ue_dlsch_vars[eNB_id_i]->pmi_ext[iii])); - - } - } - } - - - PHY_vars_UE->dlsch_ue[0][0]->rnti = n_rnti; - dlsch_unscrambling(&PHY_vars_UE->lte_frame_parms, - PHY_vars_UE->lte_ue_pdcch_vars[0]->num_pdcch_symbols, - PHY_vars_UE->dlsch_ue[0][0], - coded_bits_per_codeword, - PHY_vars_UE->lte_ue_dlsch_vars[eNB_id]->llr[0], - 0, - subframe<<1); - - - ret_eNB = dlsch_decoding(PHY_vars_UE->lte_ue_dlsch_vars[eNB_id]->llr[0], - &PHY_vars_UE->lte_frame_parms, - PHY_vars_UE->dlsch_ue[0][0], - subframe, - PHY_vars_UE->lte_ue_pdcch_vars[0]->num_pdcch_symbols); - -#ifdef XFORMS - do_forms(form, - &PHY_vars_UE->lte_frame_parms, - PHY_vars_UE->lte_ue_common_vars.dl_ch_estimates_time, - PHY_vars_UE->lte_ue_common_vars.dl_ch_estimates[eNB_id], - PHY_vars_UE->lte_ue_common_vars.rxdata, - PHY_vars_UE->lte_ue_common_vars.rxdataF, - PHY_vars_UE->lte_ue_dlsch_vars[0]->rxdataF_comp[0], - PHY_vars_UE->lte_ue_dlsch_vars[3]->rxdataF_comp[0], - PHY_vars_UE->lte_ue_dlsch_vars[0]->dl_ch_rho_ext[0], - PHY_vars_UE->lte_ue_dlsch_vars[0]->llr[0],coded_bits_per_codeword); -#endif - - if (ret_eNB <= MAX_TURBO_ITERATIONS) { - - if (n_frames==1) - printf("No DLSCH errors found\n"); - - // exit(-1); - if (fix_rounds==0) - round_eNB=5; - else - round_eNB++; - } else { - errs_eNB[round_eNB]++; - - if (n_frames==1) { - //if ((n_frames==1) || (SNR>=30)) { - printf("DLSCH errors found, uncoded ber %f\n",uncoded_ber); - - for (s=0; s<PHY_vars_UE->dlsch_ue[0][0]->harq_processes[0]->C; s++) { - if (s<PHY_vars_UE->dlsch_ue[0][0]->harq_processes[0]->Cminus) - Kr = PHY_vars_UE->dlsch_ue[0][0]->harq_processes[0]->Kminus; - else - Kr = PHY_vars_UE->dlsch_ue[0][0]->harq_processes[0]->Kplus; - - Kr_bytes = Kr>>3; - - printf("Decoded_output (Segment %d):\n",s); - - for (i=0; i<Kr_bytes; i++) - printf("%d : %x (%x)\n",i,PHY_vars_UE->dlsch_ue[0][0]->harq_processes[0]->c[s][i],PHY_vars_UE->dlsch_ue[0][0]->harq_processes[0]->c[s][i]^PHY_vars_eNB->dlsch_eNB[0][0]->harq_processes[0]->c[s][i]); - } - - write_output("rxsig0.m","rxs0", &PHY_vars_UE->lte_ue_common_vars.rxdata[0][0],10*PHY_vars_UE->lte_frame_parms.samples_per_tti,1,1); - write_output("rxsigF0.m","rxsF0", &PHY_vars_UE->lte_ue_common_vars.rxdataF[0][0],2*PHY_vars_UE->lte_frame_parms.ofdm_symbol_size*nsymb,2,1); - - if (PHY_vars_UE->lte_frame_parms.nb_antennas_rx>1) { - write_output("rxsig1.m","rxs1", PHY_vars_UE->lte_ue_common_vars.rxdata[1],PHY_vars_UE->lte_frame_parms.samples_per_tti,1,1); - write_output("rxsigF1.m","rxsF1", PHY_vars_UE->lte_ue_common_vars.rxdataF[1],2*PHY_vars_UE->lte_frame_parms.ofdm_symbol_size*nsymb,2,1); - } - - write_output("dlsch00_ch0.m","dl00_ch0", - &(PHY_vars_UE->lte_ue_common_vars.dl_ch_estimates[eNB_id][0][0]), - PHY_vars_UE->lte_frame_parms.ofdm_symbol_size*nsymb/2,1,1); - - if (PHY_vars_UE->lte_frame_parms.nb_antennas_rx>1) - write_output("dlsch01_ch0.m","dl01_ch0", - &(PHY_vars_UE->lte_ue_common_vars.dl_ch_estimates[eNB_id][1][0]), - PHY_vars_UE->lte_frame_parms.ofdm_symbol_size*nsymb/2,1,1); - - if (PHY_vars_eNB->lte_frame_parms.nb_antennas_tx>1) - write_output("dlsch10_ch0.m","dl10_ch0", - &(PHY_vars_UE->lte_ue_common_vars.dl_ch_estimates[eNB_id][2][0]), - PHY_vars_UE->lte_frame_parms.ofdm_symbol_size*nsymb/2,1,1); - - if ((PHY_vars_UE->lte_frame_parms.nb_antennas_rx>1) && (PHY_vars_eNB->lte_frame_parms.nb_antennas_tx>1)) - write_output("dlsch11_ch0.m","dl11_ch0", - &(PHY_vars_UE->lte_ue_common_vars.dl_ch_estimates[eNB_id][3][0]), - PHY_vars_UE->lte_frame_parms.ofdm_symbol_size*nsymb/2,1,1); - - //dlsch_vars - dump_dlsch2(PHY_vars_UE,eNB_id,coded_bits_per_codeword); - write_output("dlsch_e.m","e",PHY_vars_eNB->dlsch_eNB[0][0]->e,coded_bits_per_codeword,1,4); - write_output("dlsch_ber_bit.m","ber_bit",uncoded_ber_bit,coded_bits_per_codeword,1,0); - write_output("dlsch_eNB_w.m","w",PHY_vars_eNB->dlsch_eNB[0][0]->harq_processes[0]->w[0],3*(tbs+64),1,4); - write_output("dlsch_UE_w.m","w",PHY_vars_UE->dlsch_ue[0][0]->harq_processes[0]->w[0],3*(tbs+64),1,0); - - - exit(-1); - } - - // printf("round %d errors %d/%d\n",round,errs[round],trials); - - - round_eNB++; - - if (n_frames==1) - printf("DLSCH in error in round %d\n",round_eNB); - - } - - //********************** DL part end - - //********************** DL Channel Feedback - - //****************************** UL Decoding Proc - //modif start UL - SNRmeas = 10*log10(((double)signal_energy((int*)&PHY_vars_eNB->lte_eNB_common_vars.rxdata[0][0][160+(PHY_vars_eNB->lte_frame_parms.samples_per_tti*subframe_UL)], - OFDM_SYMBOL_SIZE_COMPLEX_SAMPLES/2))/((double)signal_energy((int*)&PHY_vars_eNB->lte_eNB_common_vars.rxdata[0][0][160+(PHY_vars_eNB->lte_frame_parms.samples_per_tti*(1+subframe_UL))], - OFDM_SYMBOL_SIZE_COMPLEX_SAMPLES/2)) - 1); - - if (n_frames==1) { - printf("SNRmeas %f\n",SNRmeas); - - write_output("rxsig0_UE.m","rxs0_UE", &PHY_vars_eNB->lte_eNB_common_vars.rxdata[0][0][PHY_vars_eNB->lte_frame_parms.samples_per_tti*subframe_UL],PHY_vars_eNB->lte_frame_parms.samples_per_tti,1,1); - write_output("rxsig1_UE.m","rxs1_UE", &PHY_vars_eNB->lte_eNB_common_vars.rxdata[0][0][PHY_vars_eNB->lte_frame_parms.samples_per_tti*subframe_UL],PHY_vars_eNB->lte_frame_parms.samples_per_tti,1,1); - } - - //write_output("rxsig0_UE.m","rxs0_UE", &PHY_vars_eNB->lte_eNB_common_vars.rxdata[0][0][PHY_vars_eNB->lte_frame_parms.samples_per_tti*subframe_UL],PHY_vars_eNB->lte_frame_parms.samples_per_tti,1,1);//b - -#ifndef OFDMA_ULSCH - remove_7_5_kHz(PHY_vars_eNB,subframe_UL<<1); - remove_7_5_kHz(PHY_vars_eNB,1+(subframe_UL<<1)); -#endif - - for (l=subframe_UL*PHY_vars_UE->lte_frame_parms.symbols_per_tti; l<((1+subframe_UL)*PHY_vars_UE->lte_frame_parms.symbols_per_tti); l++) { - - slot_fep_ul(&PHY_vars_eNB->lte_frame_parms, - &PHY_vars_eNB->lte_eNB_common_vars, - l%(PHY_vars_eNB->lte_frame_parms.symbols_per_tti/2), - l/(PHY_vars_eNB->lte_frame_parms.symbols_per_tti/2), - 0, - 0); - } - - PHY_vars_eNB->ulsch_eNB[0]->cyclicShift = cyclic_shift;// cyclic shift for DMRS - rx_ulsch(PHY_vars_eNB, - subframe_UL, - 0, // this is the effective sector id - 0, // this is the UE_id - PHY_vars_eNB->ulsch_eNB, - cooperation_flag); - - - ret_UE= ulsch_decoding(PHY_vars_eNB, - 0, // UE_id - subframe_UL, - control_only_flag, - 1 // Nbundled - ); - - if (ret_UE <= MAX_TURBO_ITERATIONS) { - if (n_frames==1) { - printf("No ULSCH errors found, o_ACK[0]= %d\n",PHY_vars_eNB->ulsch_eNB[0]->o_ACK[0]); - dump_ulsch(PHY_vars_eNB); - // exit(-1); - } - - round_UE=5; - - } else { - errs_UE[round_UE]++; - - if (n_frames==1) { - printf("ULSCH errors found o_ACK[0]= %d\n",PHY_vars_eNB->ulsch_eNB[0]->o_ACK[0]); - dump_ulsch(PHY_vars_eNB); - exit(-1); - } - - // printf("round %d errors %d/%d\n",round,errs[round],trials); - round_UE++; - - if (n_frames==1) { - printf("ULSCH in error in round %d\n",round_UE); - } - } // ulsch error - - //do_calibration(PHY_vars_eNB,subframe_UL); - //if (trials>0){ - // for(aa=0;aa<12;aa++) - // printf("recu[%d]=%d \n",aa,(char)(PHY_vars_eNB->ulsch_eNB[0]->harq_processes[harq_pid]->b[aa])); - //exit(-1); - // } - - if (trials<=n_K) { - - do_quan(PHY_vars_eNB, - nsymb, - pilot1-1, - quant_v, - drs_ch_estimates, - UE_id); - - - } - - if (trials <= n_K) { - - for (aa=0; aa<1; aa++) - for (k=0; k<2*300; k++) { - K_dl_ch_estimates[trials][aa][k] = dl_ch_estimates[k+aa*2*300]; - K_drs_ch_estimates[trials][aa][k] = drs_ch_estimates[k+aa*2*300]; - //K_drs_ch_estimates[trials][aa][k]=((short *)PHY_vars_eNB->lte_eNB_ulsch_vars[0]->drs_ch_estimates[UE_id][aa])[k]; - //K_dl_ch_estimates[trials][aa][k]=((short *)PHY_vars_UE->lte_ue_common_vars.dl_ch_estimates[0][aa])[k]; - } - - } else if ( (trials>n_K) && (P_eNb_active==0)) { - - - write_output("vdl0.m","vudl0", K_dl_ch_estimates[0][0],300,1,1); - write_output("vdrs0.m","vudrs0", K_drs_ch_estimates[0][0],300,1,1); - - write_output("vdl1.m","vudl1", K_dl_ch_estimates[1][0],300,1,1); - write_output("vdrs1.m","vudrs1", K_drs_ch_estimates[1][0],300,1,1); - - write_output("vdl2.m","vudl2", K_dl_ch_estimates[2][0],300,1,1); - write_output("vdrs2.m","vudrs2", K_drs_ch_estimates[2][0],300,1,1); - - write_output("vdl3.m","vudl3", K_dl_ch_estimates[3][0],300,1,1); - write_output("vdrs3.m","vudrs3", K_drs_ch_estimates[3][0],300,1,1); - - write_output("vdl4.m","vudl4", K_dl_ch_estimates[4][0],300,1,1); - write_output("vdrs4.m","vudrs4", K_drs_ch_estimates[4][0],300,1,1); - - write_output("vdl5.m","vudl5", K_dl_ch_estimates[5][0],300,1,1); - write_output("vdrs5.m","vudrs5", K_drs_ch_estimates[5][0],300,1,1); - - write_output("vdl6.m","vudl6", K_dl_ch_estimates[6][0],300,1,1); - write_output("vdrs6.m","vudrs6", K_drs_ch_estimates[6][0],300,1,1); - - write_output("vdl7.m","vudl7", K_dl_ch_estimates[7][0],300,1,1); - write_output("vdrs7.m","vudrs7", K_drs_ch_estimates[7][0],300,1,1); - - write_output("vdl8.m","vudl8", K_dl_ch_estimates[8][0],300,1,1); - write_output("vdrs8.m","vudrs8", K_drs_ch_estimates[8][0],300,1,1); - - write_output("vdl9.m","vudl9", K_dl_ch_estimates[9][0],300,1,1); - write_output("vdrs9.m","vudrs9", K_drs_ch_estimates[9][0],300,1,1); - - write_output("vdl10.m","vudl10", K_dl_ch_estimates[10][0],300,1,1); - write_output("vdrs10.m","vudrs10", K_drs_ch_estimates[10][0],300,1,1); - - write_output("vdl11.m","vudl11", K_dl_ch_estimates[11][0],300,1,1); - write_output("vdrs11.m","vudrs11", K_drs_ch_estimates[11][0],300,1,1); - - write_output("vdl12.m","vudl12", K_dl_ch_estimates[12][0],300,1,1); - write_output("vdrs12.m","vudrs12", K_drs_ch_estimates[12][0],300,1,1); - - write_output("vdl13.m","vudl13", K_dl_ch_estimates[13][0],300,1,1); - write_output("vdrs13.m","vudrs13", K_drs_ch_estimates[13][0],300,1,1); - - write_output("vdl14.m","vudl14", K_dl_ch_estimates[14][0],300,1,1); - write_output("vdrs14.m","vudrs14", K_drs_ch_estimates[14][0],300,1,1); - - do_calibration (K_dl_ch_estimates, - K_drs_ch_estimates, - PeNb_factor, - PHY_vars_eNB->lte_frame_parms.ofdm_symbol_size, - n_K); - P_eNb_active=1; - - write_output("cal1.m","cal", PeNb_factor[0],600,1,8); - - - - write_output("aue1.m","aue", drs_ch_estimates,600,1,1); - write_output("aenb1.m","aenb", dl_ch_estimates,600,1,1); - write_output("vulb.m","vul", PHY_vars_eNB->lte_eNB_ulsch_vars[0]->drs_ch_estimates[UE_id][0],5000,1,1); - write_output("vdlb.m","vdl", PHY_vars_UE->lte_ue_common_vars.dl_ch_estimates[eNB_id][0], 5000,1,1); - - //exit(-1); - - } - - if(trials>n_K+1) { - //write_output("vdl15.m","vudl15", PHY_vars_UE->lte_ue_common_vars.dl_ch_estimates[eNB_id][0],300,1,1); - //write_output("vdrs15.m","vudrs15", PHY_vars_eNB->lte_eNB_ulsch_vars[0]->drs_ch_estimates[UE_id][0],300,1,1); - //exit(-1); - } - - //modif end UL - - } //round - - //if ((errs_eNB[0]>=100) && (trials>(n_frames/2)) && (errs_UE[0]>=100) ) - // break; //b - - } //trials - - printf("\n*******DL*************SNR = %f dB (tx_lev %f, sigma2_dB %f)************DL************\n", - SNR, - (double)tx_lev_dB+10*log10(PHY_vars_UE->lte_frame_parms.ofdm_symbol_size/(NB_RB*12)), - sigma2_dB); - - printf("Errors (%d/%d %d/%d %d/%d %d/%d), Pe = (%e,%e,%e,%e), dci_errors %d/%d, Pe = %e => effective rate %f (%f), normalized delay %f (%f), uncoded_ber %f\n", - errs_eNB[0], - round_trials_eNB[0], - errs_eNB[1], - round_trials_eNB[1], - errs_eNB[2], - round_trials_eNB[2], - errs_eNB[3], - round_trials_eNB[3], - (double)errs_eNB[0]/(round_trials_eNB[0]), - (double)errs_eNB[1]/(round_trials_eNB[1]), - (double)errs_eNB[2]/(round_trials_eNB[2]), - (double)errs_eNB[3]/(round_trials_eNB[3]), - dci_errors, - round_trials_eNB[0], - (double)dci_errors/(round_trials_eNB[0]), - rate*((double)(round_trials_eNB[0]-dci_errors)/((double)round_trials_eNB[0] + round_trials_eNB[1] + round_trials_eNB[2] + round_trials_eNB[3])), - rate, - (1.0*(round_trials_eNB[0]-errs_eNB[0])+2.0*(round_trials_eNB[1]-errs_eNB[1])+3.0*(round_trials_eNB[2]-errs_eNB[2])+4.0*(round_trials_eNB[3]-errs_eNB[3]))/((double)round_trials_eNB[0])/ - (double)PHY_vars_eNB->dlsch_eNB[0][0]->harq_processes[0]->TBS, - (1.0*(round_trials_eNB[0]-errs_eNB[0])+2.0*(round_trials_eNB[1]-errs_eNB[1])+3.0*(round_trials_eNB[2]-errs_eNB[2])+4.0*(round_trials_eNB[3]-errs_eNB[3]))/((double)round_trials_eNB[0]), - avg_ber/round_trials_eNB[0]); - - fprintf(bler_fd,"%f;%d;%d;%f;%d;%d;%d;%d;%d;%d;%d;%d;%d;%f\n", - SNR, - mcs_eNB, - PHY_vars_eNB->dlsch_eNB[0][0]->harq_processes[0]->TBS, - rate, - errs_eNB[0], - round_trials_eNB[0], - errs_eNB[1], - round_trials_eNB[1], - errs_eNB[2], - round_trials_eNB[2], - errs_eNB[3], - round_trials_eNB[3], - dci_errors, - avg_ber/round_trials_eNB[0]); - - fprintf(tikz_fd,"(%f,%f)", SNR, (float)errs_eNB[0]/round_trials_eNB[0]); - - if(abstx) { //ABSTRACTION - blerr= (double)errs_eNB[0]/(round_trials_eNB[0]); - fprintf(csv_fd,"%e;\n",blerr); - } //ABStraction - - //modif start UL - printf("\n++++++UL+++++++++++++SNR = %f dB (tx_UE_lev %f, sigma2_UE_dB %f)++++++++++++UL+++++++++++\n", - SNR, - (double)tx_lev_UE_dB+10*log10(PHY_vars_UE->lte_frame_parms.ofdm_symbol_size/(nb_rb_UE*12)), - sigma2_UE_dB); - - printf("Errors (%d/%d %d/%d %d/%d %d/%d), Pe = (%e,%e,%e,%e) => effective rate_UL %f (%f), normalized delay %f (%f)\n", - errs_UE[0], - round_trials_UE[0], - errs_UE[1], - round_trials_UE[1], - errs_UE[2], - round_trials_UE[2], - errs_UE[3], - round_trials_UE[3], - (double)errs_UE[0]/(round_trials_UE[0]), - (double)errs_UE[1]/(round_trials_UE[1]), - (double)errs_UE[2]/(round_trials_UE[2]), - (double)errs_UE[3]/(round_trials_UE[3]), - rate_UE*((double)(round_trials_UE[0])/((double)round_trials_UE[0] + round_trials_UE[1] + round_trials_UE[2] + round_trials_UE[3])), - rate_UE, - (1.0*(round_trials_UE[0]-errs_UE[0])+2.0*(round_trials_UE[1]-errs_UE[1])+3.0*(round_trials_UE[2]-errs_UE[2])+4.0*(round_trials_UE[3]-errs_UE[3]))/((double)round_trials_UE[0])/ - (double)PHY_vars_eNB->dlsch_eNB[0][0]->harq_processes[0]->TBS, - (1.0*(round_trials_UE[0]-errs_UE[0])+2.0*(round_trials_UE[1]-errs_UE[1])+3.0*(round_trials_UE[2]-errs_UE[2])+4.0*(round_trials_UE[3]-errs_UE[3]))/((double)round_trials_UE[0])); - - fprintf(bler_fd,"%f;%d;%d;%f;%d;%d;%d;%d;%d;%d;%d;%d\n", - SNR, - mcs_UE, - PHY_vars_eNB->dlsch_eNB[0][0]->harq_processes[0]->TBS, - rate_UE, - errs_UE[0], - round_trials_UE[0], - errs_UE[1], - round_trials_UE[1], - errs_UE[2], - round_trials_UE[2], - errs_UE[3], - round_trials_UE[3]); - - if (((double)errs_UE[0]/(round_trials_UE[0]))<1e-2 && ((double)errs_UE[0]/(round_trials_UE[0]))<1e-3) - break; - - //modif end UL - - }// SNR - - } //ch_realization - - - fclose(bler_fd); - fprintf(tikz_fd,"};\n"); - fclose(tikz_fd); - - if (input_trch_file==1) - fclose(input_trch_fd); - - if (input_file==1) - fclose(input_fd); - - if(abstx) { // ABSTRACTION - fprintf(csv_fd,"];"); - fclose(csv_fd); - } - - printf("Freeing dlsch structures\n"); - - for (i=0; i<2; i++) { - printf("eNB %d\n",i); - free_eNB_dlsch(PHY_vars_eNB->dlsch_eNB[0][i]); - printf("UE %d\n",i); - free_ue_dlsch(PHY_vars_UE->dlsch_ue[0][i]); - } - - -#ifdef IFFT_FPGA - printf("Freeing transmit signals\n"); - free(txdataF2[0]); - free(txdataF2[1]); - free(txdataF2); - free(txdata[0]); - free(txdata[1]); - free(txdata); - //modif start UL - free(txdataF2_UE[0]); - free(txdataF2_UE[1]); - free(txdataF2_UE); - free(txdata_UE[0]); - free(txdata_UE[1]); - free(txdata_UE); - //modif end UL -#endif - - printf("Freeing channel I/O\n"); - - for (i=0; i<2; i++) { - free(s_re[i]); - free(s_im[i]); - free(r_re[i]); - free(r_im[i]); - //modif start UL - free(s_re_UE[i]); - free(s_im_UE[i]); - free(r_re_UE[i]); - free(r_im_UE[i]); - //modif end UL - } - - free(s_re); - free(s_im); - free(r_re); - free(r_im); - - //modif start UL - free(s_re_UE); - free(s_im_UE); - free(r_re_UE); - free(r_im_UE); - //modif end UL - // lte_sync_time_free(); - - return(0); -} - diff --git a/openair1/SIMULATION/LTE_RECIPROCITY/recsim_eNBUE.c b/openair1/SIMULATION/LTE_RECIPROCITY/recsim_eNBUE.c deleted file mode 100644 index fdf56deffcca48bc36ce3ddfba5ed5f776b5af04..0000000000000000000000000000000000000000 --- a/openair1/SIMULATION/LTE_RECIPROCITY/recsim_eNBUE.c +++ /dev/null @@ -1,2906 +0,0 @@ -/******************************************************************************* - OpenAirInterface - Copyright(c) 1999 - 2014 Eurecom - - OpenAirInterface is free software: you can redistribute it and/or modify - it under the terms of the GNU General Public License as published by - the Free Software Foundation, either version 3 of the License, or - (at your option) any later version. - - - OpenAirInterface is distributed in the hope that it will be useful, - but WITHOUT ANY WARRANTY; without even the implied warranty of - MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the - GNU General Public License for more details. - - You should have received a copy of the GNU General Public License - along with OpenAirInterface.The full GNU General Public License is - included in this distribution in the file called "COPYING". If not, - see <http://www.gnu.org/licenses/>. - - Contact Information - OpenAirInterface Admin: openair_admin@eurecom.fr - OpenAirInterface Tech : openair_tech@eurecom.fr - OpenAirInterface Dev : openair4g-devel@eurecom.fr - - Address : Eurecom, Campus SophiaTech, 450 Route des Chappes, CS 50193 - 06904 Biot Sophia Antipolis cedex, FRANCE - - *******************************************************************************/ -//cd Desktop/openair4G/trunk/openair1/SIMULATION/LTE_RECIPROCITY/ -#include <string.h> -#include <math.h> -#include <unistd.h> -#include <execinfo.h> -#include <signal.h> - -#include "SIMULATION/TOOLS/defs.h" -#include "PHY/types.h" -#include "PHY/defs.h" -#include "PHY/vars.h" -#include "MAC_INTERFACE/vars.h" -#ifdef IFFT_FPGA -#include "PHY/LTE_REFSIG/mod_table.h" -#endif - -#include "ARCH/CBMIMO1/DEVICE_DRIVER/vars.h" -#include "SCHED/defs.h" -#include "SCHED/vars.h" -#include "LAYER2/MAC/vars.h" - -#include "OCG_vars.h" - -#include "coeffs.h" - -#ifdef XFORMS -#include "forms.h" -#include "../../USERSPACE_TOOLS/SCOPE/lte_scope.h" -#endif - -//#define AWGN -//#define NO_DCI - -#define BW 7.68 - -extern uint16_t beta_ack[16],beta_ri[16],beta_cqi[16]; -extern unsigned short dftsizes[33]; -extern short *ul_ref_sigs[30][2][33]; - -PHY_VARS_eNB *PHY_vars_eNB[2]; -PHY_VARS_UE *PHY_vars_UE[2]; - -void handler(int sig) -{ - void *array[10]; - size_t size; - - // get void*'s for all entries on the stack - size = backtrace(array, 10); - - // print out all the frames to stderr - fprintf(stderr, "Error: signal %d:\n", sig); - backtrace_symbols_fd(array, size, 2); - exit(1); -} - - -#ifdef XFORMS -void do_forms(FD_lte_scope *form, LTE_DL_FRAME_PARMS *frame_parms, short **channel, short **channel_f, short **rx_sig, short **rx_sig_f, short *dlsch_comp, short* dlsch_comp_i, short* dlsch_rho, - short *dlsch_llr, int coded_bits_per_codeword) -{ - - int i,j,ind,k,s; - - float Re,Im; - float mag_sig[NB_ANTENNAS_RX*4*NUMBER_OF_OFDM_CARRIERS*NUMBER_OF_OFDM_SYMBOLS_PER_SLOT], - sig_time[NB_ANTENNAS_RX*4*NUMBER_OF_OFDM_CARRIERS*NUMBER_OF_OFDM_SYMBOLS_PER_SLOT], - sig2[FRAME_LENGTH_COMPLEX_SAMPLES], - time2[FRAME_LENGTH_COMPLEX_SAMPLES], - I[25*12*11*4], Q[25*12*11*4], - *llr,*llr_time; - - float avg, cum_avg; - - llr = malloc(coded_bits_per_codeword*sizeof(float)); - llr_time = malloc(coded_bits_per_codeword*sizeof(float)); - - // Channel frequency response - cum_avg = 0; - ind = 0; - - for (j=0; j<4; j++) { - for (i=0; i<frame_parms->nb_antennas_rx; i++) { - for (k=0; k<NUMBER_OF_OFDM_CARRIERS*7; k++) { - sig_time[ind] = (float)ind; - Re = (float)(channel_f[(j<<1)+i][2*k]); - Im = (float)(channel_f[(j<<1)+i][2*k+1]); - //mag_sig[ind] = (short) rand(); - mag_sig[ind] = (short)10*log10(1.0+((double)Re*Re + (double)Im*Im)); - cum_avg += (short)sqrt((double)Re*Re + (double)Im*Im) ; - ind++; - } - - // ind+=NUMBER_OF_OFDM_CARRIERS/4; // spacing for visualization - } - } - - avg = cum_avg/NUMBER_OF_USEFUL_CARRIERS; - - //fl_set_xyplot_ybounds(form->channel_f,30,70); - fl_set_xyplot_data(form->channel_f,sig_time,mag_sig,ind,"","",""); - - - - // channel_t_re = rx_sig_f[0] - //for (i=0; i<FRAME_LENGTH_COMPLEX_SAMPLES_NO_PREFIX; i++) { - for (i=0; i<NUMBER_OF_OFDM_CARRIERS*frame_parms->symbols_per_tti/2; i++) { - sig2[i] = 10*log10(1.0+(double) ((rx_sig_f[0][4*i])*(rx_sig_f[0][4*i])+(rx_sig_f[0][4*i+1])*(rx_sig_f[0][4*i+1]))); - time2[i] = (float) i; - } - - //fl_set_xyplot_ybounds(form->channel_t_re,10,90); - fl_set_xyplot_data(form->channel_t_re,time2,sig2,NUMBER_OF_OFDM_CARRIERS*frame_parms->symbols_per_tti,"","",""); - //fl_set_xyplot_data(form->channel_t_re,time2,sig2,FRAME_LENGTH_COMPLEX_SAMPLES_NO_PREFIX,"","",""); - - - // channel_t_im = rx_sig[0] - - for (i=0; i<FRAME_LENGTH_COMPLEX_SAMPLES; i++) { - sig2[i] = 10*log10(1.0+(double) ((rx_sig[0][2*i])*(rx_sig[0][2*i])+(rx_sig[0][2*i+1])*(rx_sig[0][2*i+1]))); - time2[i] = (float) i; - } - - //fl_set_xyplot_ybounds(form->channel_t_im,0,100); - //fl_set_xyplot_data(form->channel_t_im,&time2[640*12*6],&sig2[640*12*6],640*12,"","",""); - fl_set_xyplot_data(form->channel_t_im,time2,sig2,FRAME_LENGTH_COMPLEX_SAMPLES,"","",""); - //} - - - // DLSCH LLR - for(i=0; i<coded_bits_per_codeword; i++) { - llr[i] = (float) dlsch_llr[i]; - llr_time[i] = (float) i; - } - - fl_set_xyplot_data(form->demod_out,llr_time,llr,coded_bits_per_codeword,"","",""); - fl_set_xyplot_ybounds(form->demod_out,-1000,1000); - - // DLSCH I/Q - j=0; - - for (s=0; s<frame_parms->symbols_per_tti; s++) { - for(i=0; i<12*25; i++) { - I[j] = dlsch_comp[(2*25*12*s)+2*i]; - Q[j] = dlsch_comp[(2*25*12*s)+2*i+1]; - j++; - } - - //if (s==2) - // s=3; - //else if (s==5) - // s=6; - //else if (s==8) - // s=9; - } - - fl_set_xyplot_data(form->scatter_plot,I,Q,j,"","",""); - fl_set_xyplot_xbounds(form->scatter_plot,-2000,2000); - fl_set_xyplot_ybounds(form->scatter_plot,-2000,2000); - - // DLSCH I/Q - j=0; - - for (s=0; s<frame_parms->symbols_per_tti; s++) { - for(i=0; i<12*25; i++) { - I[j] = dlsch_comp_i[(2*25*12*s)+2*i]; - Q[j] = dlsch_comp_i[(2*25*12*s)+2*i+1]; - j++; - } - - } - - fl_set_xyplot_data(form->scatter_plot1,I,Q,j,"","",""); - fl_set_xyplot_xbounds(form->scatter_plot1,-2000,2000); - fl_set_xyplot_ybounds(form->scatter_plot1,-2000,2000); - - // DLSCH I/Q - j=0; - - for (s=0; s<frame_parms->symbols_per_tti; s++) { - for(i=0; i<12*25; i++) { - I[j] = dlsch_rho[(2*25*12*s)+2*i]; - Q[j] = dlsch_rho[(2*25*12*s)+2*i+1]; - j++; - } - - } - - fl_set_xyplot_data(form->scatter_plot2,I,Q,j,"","",""); - - free(llr); - free(llr_time); - -} -#endif - -void lte_param_init(unsigned char N_tx, unsigned char N_rx,unsigned char transmission_mode,uint8_t extended_prefix_flag,uint16_t Nid_cell,uint8_t tdd_config,uint8_t N_RB_DL,uint8_t osf) -{ - - LTE_DL_FRAME_PARMS *lte_frame_parms; - int i, kk; - - printf("Start lte_param_init\n"); - PHY_vars_eNB[0] = malloc(sizeof(PHY_VARS_eNB)); - PHY_vars_eNB[1] = malloc(sizeof(PHY_VARS_eNB)); - PHY_vars_UE[0] = malloc(sizeof(PHY_VARS_UE)); - PHY_vars_UE[1] = malloc(sizeof(PHY_VARS_UE)); - //PHY_config = malloc(sizeof(PHY_CONFIG)); - mac_xface = malloc(sizeof(MAC_xface)); - - randominit(0); - set_taus_seed(0); - - lte_frame_parms = &(PHY_vars_eNB[0]->lte_frame_parms); - - lte_frame_parms->N_RB_DL = N_RB_DL; //50 for 10MHz and 25 for 5 MHz - lte_frame_parms->N_RB_UL = N_RB_DL; - lte_frame_parms->Ncp = extended_prefix_flag; - lte_frame_parms->Nid_cell = Nid_cell; - lte_frame_parms->nushift = 0; - lte_frame_parms->nb_antennas_tx = N_tx; - lte_frame_parms->nb_antennas_rx = N_rx; - lte_frame_parms->phich_config_common.phich_resource = oneSixth; - lte_frame_parms->tdd_config = tdd_config; - lte_frame_parms->frame_type = 1; - // lte_frame_parms->Csrs = 2; - // lte_frame_parms->Bsrs = 0; - // lte_frame_parms->kTC = 0;44 - // lte_frame_parms->n_RRC = 0; - lte_frame_parms->mode1_flag = (transmission_mode == 1)? 1 : 0; - - init_frame_parms(lte_frame_parms,osf); - - //copy_lte_parms_to_phy_framing(lte_frame_parms, &(PHY_config->PHY_framing)); - - phy_init_top(lte_frame_parms); //allocation - - lte_frame_parms->twiddle_fft = twiddle_fft; - lte_frame_parms->twiddle_ifft = twiddle_ifft; - lte_frame_parms->rev = rev; - - for (kk=0; kk<2; kk++) { - - PHY_vars_UE[kk]->is_secondary_ue = 0; - PHY_vars_UE[kk]->lte_frame_parms = *lte_frame_parms; - - for (i=0; i<3; i++) - lte_gold(lte_frame_parms,PHY_vars_UE[kk]->lte_gold_table[i],i); - - phy_init_lte_ue(&PHY_vars_UE[kk]->lte_frame_parms, - &PHY_vars_UE[kk]->lte_ue_common_vars, - PHY_vars_UE[kk]->lte_ue_dlsch_vars, - PHY_vars_UE[kk]->lte_ue_dlsch_vars_SI, - PHY_vars_UE[kk]->lte_ue_dlsch_vars_ra, - PHY_vars_UE[kk]->lte_ue_pbch_vars, - PHY_vars_UE[kk]->lte_ue_pdcch_vars, - PHY_vars_UE[kk] - ,0); - } - - PHY_vars_eNB[0]->lte_frame_parms = *lte_frame_parms; - - - phy_init_lte_top(lte_frame_parms); - dump_frame_parms(lte_frame_parms); - - phy_init_lte_eNB(&PHY_vars_eNB[0]->lte_frame_parms, - &PHY_vars_eNB[0]->lte_eNB_common_vars, - PHY_vars_eNB[0]->lte_eNB_ulsch_vars, - 0, - PHY_vars_eNB[0], - 1, - 0); - - PHY_vars_eNB[1]->lte_frame_parms = PHY_vars_eNB[0]->lte_frame_parms; - - phy_init_lte_eNB(&PHY_vars_eNB[1]->lte_frame_parms, - &PHY_vars_eNB[1]->lte_eNB_common_vars, - PHY_vars_eNB[1]->lte_eNB_ulsch_vars, - 0, - PHY_vars_eNB[1], - 1, - 0); - - PHY_vars_eNB[0]->lte_frame_parms.nb_antennas_tx = 1; - PHY_vars_eNB[0]->lte_frame_parms.nb_antennas_rx = 1; - PHY_vars_eNB[1]->lte_frame_parms.nb_antennas_tx = 1; - PHY_vars_eNB[1]->lte_frame_parms.nb_antennas_rx = 1; - - PHY_vars_UE[0]->lte_frame_parms.nb_antennas_tx = 1; - PHY_vars_UE[0]->lte_frame_parms.nb_antennas_rx = 1; - PHY_vars_UE[1]->lte_frame_parms.nb_antennas_tx = 1; - PHY_vars_UE[1]->lte_frame_parms.nb_antennas_rx = 1; - - printf("Done lte_param_init\n"); -} - -// Apply phase offsets -void phase_offsets(double *re_in, double *im_in, double *re_out, double *im_out, int length_sig, double *phase_in, double phase_inc, int pos_neg) -{ - - int k; - double tmp_re,tmp_im; - double phase; - - for (k=0; k<length_sig; k++) { - re_out[k] = 0; - im_out[k] = 0; - } - - phase = *phase_in; - - for (k=0; k<length_sig; k++) { - tmp_re = re_in[k]*cos(phase) - pos_neg*im_in[k]*sin(phase); - tmp_im = pos_neg*re_in[k]*sin(phase) + im_in[k]*cos(phase); - - re_out[k] = tmp_re; - im_out[k] = tmp_im; - - phase += phase_inc; - } - - *phase_in = phase; -} - - -void real_fir(double *re_in, double *im_in, double *re_out, double *im_out, double *coeffs, int ord_fir, int length_sig) -{ - int k, l; - double temp1, temp2; - - for (k=0; k<length_sig; k++) { - re_out[k] = 0; - im_out[k] = 0; - } - - for (k=ord_fir; k<length_sig; k++) { - temp1 = 0; - temp2 = 0; - - for (l=0; l<ord_fir; l++) { - temp1 += coeffs[l]*re_in[k-l-1]; - temp2 += coeffs[l]*im_in[k-l-1]; - } - - re_out[k] = temp1; - im_out[k] = temp2; - } -} - -// Modif Channel quantization at UE -void do_quantization_UE(PHY_VARS_UE *PHY_vars_UE, unsigned int nsymb, uint8_t pilot0, int quant_v, short *dl_ch_estimates, int dec_f) -{ - int k; - short tx_energy; - short dl_ch_estimates_norm[PHY_vars_UE->lte_frame_parms.ofdm_symbol_size*nsymb]; - - tx_energy = 8; - - for (k=0; k<PHY_vars_UE->lte_frame_parms.ofdm_symbol_size*nsymb; k++) - dl_ch_estimates_norm[k] = ((short *)PHY_vars_UE->lte_ue_common_vars.dl_ch_estimates[0][0])[k]/tx_energy; - - for (k=pilot0*2*512; k<pilot0*2*512+2*300-1; k+=(2*dec_f)) { - if (dl_ch_estimates_norm[k] > (quant_v-1)) - dl_ch_estimates[k-pilot0*2*512] = quant_v-1; - - else if (dl_ch_estimates_norm[k] < (-quant_v)) - dl_ch_estimates[k-pilot0*2*512] = -quant_v; - else - dl_ch_estimates[k-pilot0*2*512] = dl_ch_estimates_norm[k]; - - if (dl_ch_estimates_norm[k+1]>(quant_v-1)) - dl_ch_estimates[k+1-pilot0*2*512] = quant_v-1; - else if (dl_ch_estimates_norm[k+1] < (-quant_v)) - dl_ch_estimates[k+1-pilot0*2*512] = -quant_v; - else - dl_ch_estimates[k+1-pilot0*2*512] = dl_ch_estimates_norm[k+1]; - } - - /* - for(aa=0;aa<PHY_vars_eNB->lte_frame_parms.nb_antennas_tx;aa++) { - for (aarx=0;aarx<PHY_vars_UE->lte_frame_parms.nb_antennas_rx;aarx++) { - for (k=0;k<PHY_vars_UE->lte_frame_parms.ofdm_symbol_size*nsymb;k++) { - dl_ch_estimates_norm[k+aa*PHY_vars_UE->lte_frame_parms.ofdm_symbol_size*nsymb] = ((short *)PHY_vars_UE->lte_ue_common_vars.dl_ch_estimates[0][(aa<<1)+aarx])[k]/tx_energy; - } - } - } - - for(aa=0;aa<PHY_vars_eNB->lte_frame_parms.nb_antennas_tx;aa++) { - for (k=pilot[aa]*2*512; k<pilot[aa]*2*512+2*300-1; k+=(2*dec_f)) { - if (dl_ch_estimates_norm[k+aa*PHY_vars_UE->lte_frame_parms.ofdm_symbol_size*nsymb] > (quant_v-1)) - dl_ch_estimates[k-pilot[aa]*2*512+aa*2*300] = quant_v-1; - - else if (dl_ch_estimates_norm[k+aa*PHY_vars_UE->lte_frame_parms.ofdm_symbol_size*nsymb] < (-quant_v)) - dl_ch_estimates[k-pilot[aa]*2*512+aa*2*300] = -quant_v; - else - dl_ch_estimates[k-pilot[aa]*2*512+aa*2*300] = dl_ch_estimates_norm[k+aa*PHY_vars_UE->lte_frame_parms.ofdm_symbol_size*nsymb]; - - if (dl_ch_estimates_norm[k+1+aa*PHY_vars_UE->lte_frame_parms.ofdm_symbol_size*nsymb]>(quant_v-1)) - dl_ch_estimates[k+1-pilot[aa]*2*512+aa*2*300] = quant_v-1; - else if (dl_ch_estimates_norm[k+1+aa*PHY_vars_UE->lte_frame_parms.ofdm_symbol_size*nsymb] < (-quant_v)) - dl_ch_estimates[k+1-pilot[aa]*2*512+aa*2*300] = -quant_v; - else - dl_ch_estimates[k+1-pilot[aa]*2*512+aa*2*300] = dl_ch_estimates_norm[k+1+aa*PHY_vars_UE->lte_frame_parms.ofdm_symbol_size*nsymb]; - } - } - */ -} - -void do_quantization_eNB(PHY_VARS_eNB *PHY_vars_eNB, PHY_VARS_UE *PHY_vars_UE, unsigned int nsymb, uint8_t pilot0, uint8_t pilot1, int quant_v, short *drs_ch_estimates, int UE_id) -{ - int k, aa, aarx; - short tx_energy; - short drs_ch_estimates_norm[2*PHY_vars_eNB->lte_frame_parms.ofdm_symbol_size*nsymb]; - - uint8_t pilot[2]; - pilot[0] = pilot0; - pilot[1] = pilot1; - - //for(k=0;k<PHY_vars_eNB->lte_frame_parms.nb_antennas_tx;k++) - tx_energy = 8; - - for(aa=0; aa<PHY_vars_eNB->lte_frame_parms.nb_antennas_tx; aa++) { - for (aarx=0; aarx<PHY_vars_UE->lte_frame_parms.nb_antennas_rx; aarx++) { - for (k=0; k<PHY_vars_UE->lte_frame_parms.ofdm_symbol_size*nsymb; k++) { - drs_ch_estimates_norm[k+aa*PHY_vars_UE->lte_frame_parms.ofdm_symbol_size*nsymb] = ((short *)PHY_vars_eNB->lte_eNB_ulsch_vars[0]->drs_ch_estimates[UE_id][aa+aarx])[k]/tx_energy; - } - } - } - - for(aa=0; aa<PHY_vars_eNB->lte_frame_parms.nb_antennas_tx; aa++) { - for (k=pilot[aa]*2*300; k<pilot[aa]*2*300+2*300-1; k+=2) { - if (drs_ch_estimates_norm[k+aa*PHY_vars_UE->lte_frame_parms.ofdm_symbol_size*nsymb]>(quant_v-1)) - drs_ch_estimates[k-pilot[aa]*2*300+aa*2*300] = quant_v-1; - else if ((drs_ch_estimates_norm[k+aa*2*300*nsymb]) < (-quant_v)) - drs_ch_estimates[k-pilot[aa]*2*300+aa*2*300] = -quant_v; - else - drs_ch_estimates[k-pilot[aa]*2*300+aa*2*300] = drs_ch_estimates_norm[k+aa*PHY_vars_UE->lte_frame_parms.ofdm_symbol_size*nsymb]; - - if (drs_ch_estimates_norm[k+1+aa*PHY_vars_UE->lte_frame_parms.ofdm_symbol_size*nsymb]>(quant_v-1)) - drs_ch_estimates[k+1-pilot[aa]*2*300+aa*2*300] = quant_v-1; - else if ((drs_ch_estimates_norm[k+1+aa*2*300*nsymb])< (-quant_v)) - drs_ch_estimates[k+1-pilot[aa]*2*300+aa*2*300] = -quant_v; - else - drs_ch_estimates[k+1-pilot[aa]*2*300+aa*2*300] = drs_ch_estimates_norm[k+1+aa*PHY_vars_UE->lte_frame_parms.ofdm_symbol_size*nsymb]; - } - } -} - -void do_precoding(PHY_VARS_eNB *PHY_vars_eNB, PHY_VARS_UE *PHY_vars_UE, double PeNb_factor[2][600], short *prec, double *Norm, int nsymb, int UE_id, int aa) -{ - - int l, k; - double temp[nsymb][600]; - short drs_ch_estimates[600*nsymb]; - short dl_ch_estimates[600*nsymb]; - - for (k=0; k<600*nsymb; k++) { - drs_ch_estimates[k] = ((short *)PHY_vars_eNB->lte_eNB_ulsch_vars[0]->drs_ch_estimates[UE_id][(aa<<1)])[k]; - //drs_ch_estimates[aa][2*k+1] = ((short *)PHY_vars_eNB->lte_eNB_ulsch_vars[0]->drs_ch_estimates[UE_id][0])[2*k+1]; - prec[2*k] = 0; - prec[2*k+1] = 0; - } - - for (k=0; k<600*nsymb; k++) { - dl_ch_estimates[k] = ((short *)PHY_vars_UE->lte_ue_common_vars.dl_ch_estimates[0][(aa<<1)])[k]; - } - - //printf("PHY_vars_eNB->lte_frame_parms.ofdm_symbol_size = %d\n", PHY_vars_eNB->lte_frame_parms.ofdm_symbol_size); - //printf("nsymb = %d\n", nsymb); - - //write_output("drs1.m","drs", drs_ch_estimates[0],nsymb*PHY_vars_eNB->lte_frame_parms.ofdm_symbol_size,1,1); - - //exit(-1); - - for (k=0; k<nsymb; k++) { - for (l=0; l<600; l+=2) { - temp[k][l] = drs_ch_estimates[k*600+l]*PeNb_factor[aa][l] - drs_ch_estimates[k*600+l+1]*PeNb_factor[aa][l+1]; - temp[k][l+1] = drs_ch_estimates[k*600+l+1]*PeNb_factor[aa][l] + drs_ch_estimates[k*600+l]*PeNb_factor[aa][l+1]; - - prec[k*2*PHY_vars_eNB->lte_frame_parms.ofdm_symbol_size+l] = (short)(temp[k][l]);///(temp[k][l]*temp[k][l]+temp[k][l+1]*temp[k][l+1])); - prec[k*2*PHY_vars_eNB->lte_frame_parms.ofdm_symbol_size+l+1] = (short)(temp[k][l+1]);///(temp[k][l]*temp[k][l]+temp[k][l+1]*temp[k][l+1])); - Norm[k*2*PHY_vars_eNB->lte_frame_parms.ofdm_symbol_size+l] = sqrt(temp[k][l]*temp[k][l] + temp[k][l+1]*temp[k][l+1]); - Norm[k*2*PHY_vars_eNB->lte_frame_parms.ofdm_symbol_size+l+1] = sqrt(temp[k][l]*temp[k][l] + temp[k][l+1]*temp[k][l+1]); - } - } - - //write_output("drsch.m","drschF", drs_ch_estimates[0],nsymb*PHY_vars_eNB->lte_frame_parms.ofdm_symbol_size,1,1); - //write_output("prec.m","precF", prec,nsymb*PHY_vars_eNB->lte_frame_parms.ofdm_symbol_size,1,1); - //write_output("dlch.m","dlchF", dl_ch_estimates,nsymb*PHY_vars_eNB->lte_frame_parms.ofdm_symbol_size,1,1); - //exit(-1); - -} -/* -void do_precoding_perfect(PHY_VARS_UE *PHY_vars_UE, double PeNb_factor[2][600], short *prec, double *Norm, int nsymb, int UE_id) { - - int l, k, aa; - double temp[nsymb][600]; - short dl_ch_estimates[2][2*PHY_vars_UE->lte_frame_parms.ofdm_symbol_size*nsymb]; - - for (aa = 0; aa<1; aa++) { - for (k=0; k<PHY_vars_eNB->lte_frame_parms.ofdm_symbol_size*nsymb; k++) { - dl_ch_estimates[aa][2*k] = ((short *)PHY_vars_UE->lte_ue_common_vars.dl_ch_estimates[0][0])[2*k]; - dl_ch_estimates[aa][2*k+1] = ((short *)PHY_vars_UE->lte_ue_common_vars.dl_ch_estimates[0][0])[2*k+1]; - prec[2*k] = 1; - prec[2*k+1] = 0; - } - } - - //write_output("drs1.m","drs", drs_ch_estimates[0],2*nsymb*PHY_vars_eNB->lte_frame_parms.ofdm_symbol_size,1,1); - - for (aa=0; aa<1; aa++) { - for (k=0; k<nsymb; k++) { - for (l=0; l<600; l+=2) { - temp[k][l] = dl_ch_estimates[aa][2*k*PHY_vars_UE->lte_frame_parms.ofdm_symbol_size+l]; - temp[k][l+1] = dl_ch_estimates[aa][2*k*PHY_vars_UE->lte_frame_parms.ofdm_symbol_size+l+1]; - } - } - for (k=0; k<nsymb; k++) { - for (l=0; l<600; l+=2) { - prec[k*2*PHY_vars_eNB->lte_frame_parms.ofdm_symbol_size+l] = (short)(temp[k][l]);///(temp[k][l]*temp[k][l]+temp[k][l+1]*temp[k][l+1]) - prec[k*2*PHY_vars_eNB->lte_frame_parms.ofdm_symbol_size+l+1] = (short)(temp[k][l+1]);//(short)(-temp[k][l+1]); - //Norm[k*2*PHY_vars_eNB->lte_frame_parms.ofdm_symbol_size+l] = sqrt(temp[k][l]*temp[k][l] + temp[k][l+1]*temp[k][l+1]); - //Norm[k*2*PHY_vars_eNB->lte_frame_parms.ofdm_symbol_size+l+1] = sqrt(temp[k][l]*temp[k][l] + temp[k][l+1]*temp[k][l+1]); - } - } - } -}*/ - -//end Modif channel quantization at UE - -//calibration algo -void do_calibration(short K_dl_ch_estimates[25][2][600], short K_drs_ch_estimates[25][2][600], double PeNb_factor[2][600], int ofdm_syn, int n_K) -{ - - //Calib Algor in eNb - int i=0, s_c=0; - double ar=0,ai=0,br=0,bi=0,cr=0,ci=0,dr=0,di=0; - int aa; - int length_H_G = n_K*4; - - //double phase_inc = 2*M_PI*(4*512-4*300)*(5-1)*1/7.68e6; - - - short H[length_H_G]; - short G[length_H_G]; - bzero(H,length_H_G); - bzero(G,length_H_G); - - for(s_c=0; s_c<600; s_c+=2) { - for(aa=0; aa<1; aa++) { - //system for 1 ant at primary, change to perform onother prim ant - for(i=0; i<n_K; i++) { - //printf("i = %d\n",i); - G[(i<<2)+0] = K_dl_ch_estimates[i][aa][s_c+0]; - G[(i<<2)+1] = K_dl_ch_estimates[i][aa][s_c+1]; - H[(i<<2)+0] = K_drs_ch_estimates[i][aa][s_c+0]; - H[(i<<2)+1] = K_drs_ch_estimates[i][aa][s_c+1]; - } - - for(i=0; i<n_K; i++) { - ar += H[(i<<2)+0]*H[(i<<2)+0] + H[(i<<2)+1]*H[(i<<2)+1]; - br += H[(i<<2)+0]*G[(i<<2)+0] + H[(i<<2)+1]*G[(i<<2)+1]; - bi += -H[(i<<2)+0]*G[(i<<2)+1] + H[(i<<2)+1]*G[(i<<2)+0]; - dr += G[(i<<2)+0]*G[(i<<2)+0] + G[(i<<2)+1]*G[(i<<2)+1]; - } - - ar = (double)(ar/100); - br = (double)(br/100); - bi = (double)(bi/100); - dr = (double)(dr/100); - - - if( (ar-dr+iSqrt((ar-dr)*(ar-dr)+((br*br+bi*bi)*4)))==0) { - PeNb_factor[aa][s_c] = 0; - PeNb_factor[aa][s_c+1] = 0; - } else { - PeNb_factor[aa][s_c] = (2*br/(ar-dr+iSqrt((ar-dr)*(ar-dr)+((br*br+bi*bi)*4)))); - PeNb_factor[aa][s_c+1] = (-2*bi/(ar-dr+iSqrt((ar-dr)*(ar-dr)+((br*br+bi*bi)*4)))); - } - - ar=0; - ai=0; - br=0; - bi=0; - cr=0; - ci=0; - dr=0; - di=0; - //if ((s_c>>1) > 4) exit(-1); - } - } - - msg("P_eNb DETERMINED.. \n"); -} - - -//DCI2_5MHz_2A_M10PRB_TDD_t DLSCH_alloc_pdu2_2A[2]; -DCI2_5MHz_2D_M10PRB_TDD_t DLSCH_alloc_pdu2_2D[2]; - - -#define UL_RB_ALLOC 0x1ff; -//#define CCCH_RB_ALLOC computeRIV(PHY_vars_eNB[0]->lte_frame_parms.N_RB_UL,0,2) -//#define DLSCH_RB_ALLOC 0x1fbf // igore DC component,RB13 -#define DLSCH_RB_ALLOC 0x1fff // all 25 RBs -//#define DLSCH_RB_ALLOC 0x0001 - -int main(int argc, char **argv) -{ - - char c; - int k,i,j,b,aa,aarx,Msc_RS_idx=0; - - double sigma2_eNB[2], sigma2_eNB_dB[2]= {10,10},SNR,snr0=-2.0,snr1,rate_eNB=0; - //modif start UL - unsigned int coded_bits_per_codeword_UE; - double sigma2_UE[2], sigma2_UE_dB[2]= {10,10}, SNRmeas[2], rate_UE=0; - uint8_t control_only_flag = 0; - uint8_t cooperation_flag = 0; - int **txdata_UE[2]; - uint8_t cyclic_shift = 0; - uint8_t beta_ACK=0,beta_RI=0,beta_CQI=2; - uint8_t srs_flag = 0; - char fname[20],vname[20]; - //modif end UL - double snr_step=1, snr_int=30; - //int **txdataF, **txdata; - int **txdata_eNB[2]; -#ifdef IFFT_FPGA - int **txdataF2_eNB[2]; - //modif start UL - int **txdataF2_UE[2]; - //modif end UL - int ind; -#endif - LTE_DL_FRAME_PARMS *frame_parms; - double **s_re_eNB[2], **s_im_eNB[2], **r_re_eNB[2][2], **r_im_eNB[2][2], **r_re_2eNB[2], **r_im_2eNB[2]; - //modif start UL - int llb; - double **s_re_UE[2], **s_im_UE[2], **r_re_UE[2][2], **r_im_UE[2][2], **r_re_2UE[2], **r_im_2UE[2]; - //modif end UL - double forgetting_factor=1.0; //in [0,1] 0 means a new channel every time, 1 means keep the same channel - //double hold_channel=0; //use hold_channel=1 instead of forgetting_factor=1 (more efficient) - double iqim=0.0; - - uint8_t extended_prefix_flag=0,transmission_mode=1,n_tx=1,n_rx=1; - uint16_t Nid_cell=0; - - int eNB_id = 0, eNB_id_i = NUMBER_OF_eNB_MAX; - //modif start UL - int UE_id = 0; - unsigned char mcs_UE; - int dec_f=1; - short quant=8, quant_v; - //modif end UL - unsigned char mcs_eNB,dual_stream_UE = 0,awgn_flag=0,round_eNB[2],round_UE[2],dci_flag=0; - unsigned char i_mod = 2; - unsigned short NB_RB=conv_nprb(0,DLSCH_RB_ALLOC); - unsigned char Ns,l,m; - uint16_t tdd_config=3; - uint16_t n_rnti=0x1234; - - int decalibration = 0, phase_offset = 0; - - double s_time = 1/7.68e6; - double delta_offset = 100; - double phase_inc = 2*M_PI*delta_offset*s_time; - - double phase_in_UL = phase_inc; - double phase_in_DL = phase_inc; - - SCM_t channel_model=Rayleigh1_corr; - - unsigned char *input_buffer[2]; - unsigned short input_buffer_length[2]; - unsigned int ret_eNB[2],ret_UE[2]; - unsigned int coded_bits_per_codeword=0,nsymb,dci_cnt,tbs; - - unsigned int tx_lev_eNB[2],tx_lev_eNB_dB[2],trials,errs_eNB[2][4],round_trials_UE[2][4],round_trials_eNB[2][4],dci_errors[2]= {0,0},dlsch_active=0,num_layers; - //modif start UL - unsigned int tx_lev_UE[2],tx_lev_UE_dB[2],errs_UE[2][4]; - //unsigned char *input_buffer_UE; //b - char *input_buffer_UE[2]; //b - unsigned short input_buffer_length_UE[2]; - //modif end UL - int re_allocated; - FILE *bler_fd=NULL; - char bler_fname[256]; - FILE *tikz_fd=NULL; - char tikz_fname[256]; - - FILE *input_trch_fd=NULL; - unsigned char input_trch_file=0; - FILE *input_fd=NULL; - unsigned char input_file=0; - char input_val_str[50],input_val_str2[50]; - - char input_trch_val[16]; - double pilot_sinr, abs_channel; - - // unsigned char pbch_pdu[6]; - - DCI_ALLOC_t dci_alloc[8],dci_alloc_rx[8]; - int num_common_dci=0,num_ue_spec_dci=0,num_dci=0; - - // FILE *rx_frame_file; - - int kk, ll; - - int n_frames; - int n_ch_rlz = 1; - channel_desc_t *eNB2UE[2][2]; - channel_desc_t *UE2eNB[2][2]; - double snr; - uint8_t num_pdcch_symbols=3,num_pdcch_symbols_2=0; - uint8_t pilot1,pilot2,pilot3; - uint8_t rx_sample_offset = 0; - //char stats_buffer[4096]; - //int len; - uint8_t num_rounds = 1,fix_rounds=0; - uint8_t subframe_DL=6; - //modif start UL - int subframe_UL=2; - //modif end UL - int u; - int abstx=0; - int iii; - FILE *csv_fd=NULL; - char csv_fname[20]; - int ch_realization; - int pmi_feedback=0; - // void *data; - // int ii; - // int bler; - double blerr,uncoded_ber[2],avg_ber[2]; - short *uncoded_ber_bit; - uint8_t N_RB_DL=25,osf=1; - int16_t amp; - //modif start UL - unsigned char harq_pid[2]; - FILE *trch_out_fd=NULL; - unsigned char nb_rb_UE=25, first_rb=0, bundling_flag=1; - //modif end UL -#ifdef XFORMS - FD_lte_scope *form; - char title[255]; -#endif - - // Calibration parameters - int P_eNb_active=0; - double PeNb_factor[2][600]; - - signal(SIGSEGV, handler); - - // default parameters - mcs_eNB = 0; - //modif start UL - mcs_UE = 4; - //modif end UL - n_frames = 100; - snr0 = 20; - num_layers = 1; - - while ((c = getopt (argc, argv, "hadpm:n:o:s:f:t:c:g:r:F:x:y:z:M:N:I:i:R:S:C:T:b:u:w:X:q:D:")) != -1) { - switch (c) { - case 'a': - awgn_flag = 1; - break; - - case 'b': - tdd_config=atoi(optarg); - break; - - case 'd': - dci_flag = 1; - break; - - case 'm': - mcs_eNB = atoi(optarg); - break; - - /*case 'C': - beta_CQI = atoi(optarg); - if ((beta_CQI>15)||(beta_CQI<2)) { - printf("beta_cqi must be in (2..15)\n"); - exit(-1); - } - break; - - case 'R': - beta_RI = atoi(optarg); - if ((beta_RI>15)||(beta_RI<2)) { - printf("beta_ri must be in (0..13)\n"); - exit(-1); - } - break;*/ - //modif start UL - case 'w': - mcs_UE = atoi(optarg); - break; - - case 'r': - nb_rb_UE = atoi(optarg); - break; - - case 'f': - first_rb = atoi(optarg); - break; - - case 'q': - quant = atoi(optarg); - break; - - case 'D': - dec_f = atoi(optarg); - break; - - //modif end UL - case 'n': - n_frames = atoi(optarg); - break; - - case 'C': - Nid_cell = atoi(optarg); - break; - - case 'o': - rx_sample_offset = atoi(optarg); - break; - - case 'F': - forgetting_factor = atof(optarg); - break; - - case 's': - snr0 = atoi(optarg); - break; - - case 't': - //Td= atof(optarg); - printf("Please use the -G option to select the channel model\n"); - exit(-1); - break; - - case 'X': - snr_step= atof(optarg); - break; - - case 'M': - abstx= atof(optarg); - break; - - case 'N': - n_ch_rlz= atof(optarg); - break; - - case 'p': - extended_prefix_flag=1; - break; - - case 'c': - num_pdcch_symbols=atoi(optarg); - break; - - case 'g': - switch((char)*optarg) { - case 'A': - channel_model=SCM_A; - break; - - case 'B': - channel_model=SCM_B; - break; - - case 'C': - channel_model=SCM_C; - break; - - case 'D': - channel_model=SCM_D; - break; - - case 'E': - channel_model=EPA; - break; - - case 'F': - channel_model=EVA; - break; - - case 'G': - channel_model=ETU; - break; - - case 'H': - channel_model=Rayleigh8; - break; - - case 'I': - channel_model=Rayleigh1; - break; - - case 'J': - channel_model=Rayleigh1_corr; - break; - - case 'K': - channel_model=Rayleigh1_anticorr; - break; - - case 'L': - channel_model=Rice8; - break; - - case 'M': - channel_model=Rice1; - break; - - default: - msg("Unsupported channel model!\n"); - exit(-1); - } - - break; - - case 'x': - transmission_mode=atoi(optarg); - - if ((transmission_mode!=1) && - (transmission_mode!=2) && - (transmission_mode!=5) && - (transmission_mode!=6)) { - msg("Unsupported transmission mode %d\n",transmission_mode); - exit(-1); - } - - break; - - case 'y': - n_tx=atoi(optarg); - - if ((n_tx==0) || (n_tx>2)) { - msg("Unsupported number of tx antennas %d\n",n_tx); - exit(-1); - } - - break; - - case 'z': - n_rx=atoi(optarg); - - if ((n_rx==0) || (n_rx>2)) { - msg("Unsupported number of rx antennas %d\n",n_rx); - exit(-1); - } - - break; - - case 'I': - input_trch_fd = fopen(optarg,"r"); - input_trch_file=1; - break; - - case 'i': - input_fd = fopen(optarg,"r"); - input_file=1; - dci_flag = 1; - break; - - case 'R': - num_rounds=atoi(optarg); - fix_rounds=1; - break; - - case 'S': - subframe_DL=atoi(optarg); - break; - - case 'T': - n_rnti=atoi(optarg); - break; - - case 'u': - dual_stream_UE=atoi(optarg); - - if ((n_tx!=2) || (transmission_mode!=5)) { - msg("Unsupported nb of decoded users: %d user(s), %d user(s) to decode\n", n_tx, dual_stream_UE); - exit(-1); - } - - break; - - case 'h': - default: - printf("%s -h(elp) -a(wgn on) -d(ci decoding on) -p(extended prefix on) -m mcs_eNB -n n_frames -s snr0 -t Delayspread -x transmission mode (1,2,5,6) -y TXant -z RXant -I trch_file\n",argv[0]); - printf("-h This message\n"); - printf("-a Use AWGN channel and not multipath\n"); - printf("-c Number of PDCCH symbols\n"); - printf("-m MCS_eNB\n"); - printf("-w MCS_UE\n"); - printf("-q quantization parameters\n"); - printf("-D DL decimacion factor at UE\n"); - printf("-r nb_rb_UE Number of ressource blocs in the UL\n"); - printf("-f First ressource bloc in the UL\n"); - printf("-d Transmit the DCI and compute its error statistics and the overall throughput\n"); - printf("-p Use extended prefix mode\n"); - printf("-n Number of frames to simulate\n"); - printf("-o Sample offset for receiver\n"); - printf("-s Starting SNR, runs from SNR to SNR+%.1fdB in steps of %.1fdB. If n_frames is 1 then just SNR is simulated and MATLAB/OCTAVE output is generated\n", snr_int, snr_step); - printf("-X step size of SNR, default value is 1.\n"); - printf("-t Delay spread for multipath channel\n"); - //printf("-r Ricean factor (dB, 0 dB = Rayleigh, 100 dB = almost AWGN)\n"); - printf("-g [A:M] Use 3GPP 25.814 SCM-A/B/C/D('A','B','C','D') or 36-101 EPA('E'), EVA ('F'),ETU('G') models (ignores delay spread and Ricean factor), Rayghleigh8 ('H'), Rayleigh1('I'), Rayleigh1_corr('J'), Rayleigh1_anticorr ('K'), Rice8('L'), Rice1('M')\n"); - printf("-F forgetting factor (0 new channel every trial, 1 channel constant\n"); - printf("-x Transmission mode (1,2,6 for the moment)\n"); - printf("-y Number of TX antennas used in eNB\n"); - printf("-z Number of RX antennas used in UE\n"); - printf("-R Number of HARQ rounds (fixed)\n"); - printf("-M Determines whether the Absraction flag is on or Off. 1-->On and 0-->Off. Default status is Off. \n"); - printf("-N Determines the number of Channel Realizations in Absraction mode. Default value is 1. \n"); - printf("-I Input filename for TrCH data (binary)\n"); - printf("-u Determines if the 2 streams at the UE are decoded or not. 0-->U2 is interference only and 1-->U2 is detected\n"); - exit(1); - break; - } - } - -#ifdef XFORMS - fl_initialize (&argc, argv, NULL, 0, 0); - form = create_form_lte_scope(); - sprintf (title, "LTE DLSIM SCOPE"); - fl_show_form (form->lte_scope, FL_PLACE_HOTSPOT, FL_FULLBORDER, title); -#endif - - lte_param_init(n_tx,n_rx,transmission_mode,extended_prefix_flag,Nid_cell,tdd_config,N_RB_DL,osf); - - printf("Setting mcs_eNB = %d\n",mcs_eNB); - //modif start UL - printf("Setting mcs_UE = %d\n",mcs_UE); - quant_v = (2<<(quant-1))/2; //b quantization bit - //printf("quant %d\n",quant_v); - //exit(-1); - //modif end UL - printf("NPRB = %d\n",NB_RB); - printf("n_frames = %d\n",n_frames); - printf("Transmission mode %d with %dx%d antenna configuration, Extended Prefix %d\n",transmission_mode,n_tx,n_rx,extended_prefix_flag); - - snr1 = snr0+snr_int; - printf("SNR0 %f, SNR1 %f\n",snr0,snr1); - - frame_parms = &PHY_vars_eNB[0]->lte_frame_parms; - -#ifdef IFFT_FPGA - - for (kk=0; kk<2; kk++) { - txdata_eNB[kk] = (int **)malloc16(2*sizeof(int*)); - txdata_eNB[kk][0] = (int *)malloc16(FRAME_LENGTH_BYTES); - txdata_eNB[kk][1] = (int *)malloc16(FRAME_LENGTH_BYTES); - - bzero(txdata_eNB[kk][0],FRAME_LENGTH_BYTES); - bzero(txdata_eNB[kk][1],FRAME_LENGTH_BYTES); - - txdataF2_eNB[kk] = (int **)malloc16(2*sizeof(int*)); - txdataF2_eNB[kk][0] = (int *)malloc16(FRAME_LENGTH_BYTES_NO_PREFIX); - txdataF2_eNB[kk][1] = (int *)malloc16(FRAME_LENGTH_BYTES_NO_PREFIX); - - bzero(txdataF2_eNB[kk][0],FRAME_LENGTH_BYTES_NO_PREFIX); - bzero(txdataF2_eNB[kk][1],FRAME_LENGTH_BYTES_NO_PREFIX); - - txdata_UE[kk] = (int **)malloc16(2*sizeof(int*)); - txdata_UE[kk][0] = (int *)malloc16(FRAME_LENGTH_BYTES); - txdata_UE[kk][1] = (int *)malloc16(FRAME_LENGTH_BYTES); - - bzero(txdata_UE[kk][0],FRAME_LENGTH_BYTES); - bzero(txdata_UE[kk][1],FRAME_LENGTH_BYTES); - - txdataF2_UE[kk] = (int **)malloc16(2*sizeof(int*)); - txdataF2_UE[kk][0] = (int *)malloc16(FRAME_LENGTH_BYTES_NO_PREFIX); - txdataF2_UE[kk][1] = (int *)malloc16(FRAME_LENGTH_BYTES_NO_PREFIX); - - bzero(txdataF2_UE[kk][0],FRAME_LENGTH_BYTES_NO_PREFIX); - bzero(txdataF2_UE[kk][1],FRAME_LENGTH_BYTES_NO_PREFIX); - } - - //modif end UL -#else - txdata_eNB[0] = PHY_vars_eNB[0]->lte_eNB_common_vars.txdata[eNB_id]; - txdata_eNB[1] = PHY_vars_eNB[1]->lte_eNB_common_vars.txdata[eNB_id]; - //modif start UL - txdata_UE[0] = PHY_vars_UE[0]->lte_ue_common_vars.txdata; - txdata_UE[1] = PHY_vars_UE[1]->lte_ue_common_vars.txdata; - //modif end UL -#endif - - printf("PHY_vars_eNB->lte_frame_parms.Ncp = %d\n", PHY_vars_eNB[0]->lte_frame_parms.Ncp); - - for (kk=0; kk<2; kk++) { - s_re_eNB[kk] = malloc(2*sizeof(double*)); - s_im_eNB[kk] = malloc(2*sizeof(double*)); - s_re_UE[kk] = malloc(2*sizeof(double*)); - s_im_UE[kk] = malloc(2*sizeof(double*)); - r_re_2eNB[kk] = malloc(2*sizeof(double*)); - r_im_2eNB[kk] = malloc(2*sizeof(double*)); - r_re_2UE[kk] = malloc(2*sizeof(double*)); - r_im_2UE[kk] = malloc(2*sizeof(double*)); - - for (ll=0; ll<2; ll++) { - r_re_eNB[kk][ll] = malloc(2*sizeof(double*)); - r_im_eNB[kk][ll] = malloc(2*sizeof(double*)); - r_re_UE[ll][kk] = malloc(2*sizeof(double*)); - r_im_UE[ll][kk] = malloc(2*sizeof(double*)); - } - } - - nsymb = (PHY_vars_eNB[0]->lte_frame_parms.Ncp == 0) ? 14 : 12; - //modif start UL - //int dl_ch_estimates_norm[4][PHY_vars_UE->lte_frame_parms.ofdm_symbol_size*nsymb/2]; - int n_K=15; - int dl_ch_estimates_length=(2*300*4)/dec_f; - short dl_ch_estimates[2][dl_ch_estimates_length]; - bzero(dl_ch_estimates[0],(dl_ch_estimates_length)); - bzero(dl_ch_estimates[1],(dl_ch_estimates_length)); - - short K_dl_ch_estimates[n_K][2][600]; - short K_drs_ch_estimates[n_K][2][600]; - - double s_re_out[2*nsymb*OFDM_SYMBOL_SIZE_COMPLEX_SAMPLES], s_im_out[2*nsymb*OFDM_SYMBOL_SIZE_COMPLEX_SAMPLES], r_re_out[2*nsymb*OFDM_SYMBOL_SIZE_COMPLEX_SAMPLES], - r_im_out[2*nsymb*OFDM_SYMBOL_SIZE_COMPLEX_SAMPLES]; - - for(aa=0; aa<2; aa++) { - for(k=0; k<n_K; k++) { - bzero(K_dl_ch_estimates[k][aa],600); - bzero(K_drs_ch_estimates[k][aa],600); - } - } - - int drs_ch_estimates_length=(2*300*4)/dec_f; - short drs_ch_estimates[2][drs_ch_estimates_length]; - bzero(drs_ch_estimates[0],(drs_ch_estimates_length)); - bzero(drs_ch_estimates[1],(drs_ch_estimates_length)); - - coded_bits_per_codeword_UE = nb_rb_UE * (12 * get_Qm(mcs_UE)) * nsymb; - rate_UE = (double)dlsch_tbs25[get_I_TBS(mcs_UE)][nb_rb_UE-1]/(coded_bits_per_codeword_UE); - //modif end UL - - printf("Channel Model=%d\n",channel_model); - printf("SCM-A=%d, SCM-B=%d, SCM-C=%d, SCM-D=%d, EPA=%d, EVA=%d, ETU=%d, Rayleigh8=%d, Rayleigh1=%d, Rayleigh1_corr=%d, Rayleigh1_anticorr=%d, Rice1=%d, Rice8=%d\n", - SCM_A, SCM_B, SCM_C, SCM_D, EPA, EVA, ETU, Rayleigh8, Rayleigh1, Rayleigh1_corr, Rayleigh1_anticorr, Rice1, Rice8); - sprintf(bler_fname,"second_bler_tx%d_mcs%d_chan%d.csv",transmission_mode,mcs_eNB,channel_model); - bler_fd = fopen(bler_fname,"w"); - fprintf(bler_fd,"SNR; MCS; TBS; rate; err0; trials0; err1; trials1; err2; trials2; err3; trials3; dci_err\n"); - - if(abstx) { - // CSV file - sprintf(csv_fname,"data_out%d.m",mcs_eNB); - csv_fd = fopen(csv_fname,"w"); - fprintf(csv_fd,"data_all%d=[",mcs_eNB); - } - - sprintf(tikz_fname, "second_bler_tx%d_u2=%d_mcs%d_chan%d_nsimus%d",transmission_mode,dual_stream_UE,mcs_eNB,channel_model,n_frames); - tikz_fd = fopen(tikz_fname,"w"); - - switch (mcs_eNB) { - case 0: - fprintf(tikz_fd,"\\addplot[color=blue, mark=star] plot coordinates {"); - break; - - case 1: - fprintf(tikz_fd,"\\addplot[color=red, mark=star] plot coordinates {"); - break; - - case 2: - fprintf(tikz_fd,"\\addplot[color=green, mark=star] plot coordinates {"); - break; - - case 3: - fprintf(tikz_fd,"\\addplot[color=yellow, mark=star] plot coordinates {"); - break; - - case 4: - fprintf(tikz_fd,"\\addplot[color=black, mark=star] plot coordinates {"); - break; - - case 5: - fprintf(tikz_fd,"\\addplot[color=blue, mark=o] plot coordinates {"); - break; - - case 6: - fprintf(tikz_fd,"\\addplot[color=red, mark=o] plot coordinates {"); - break; - - case 7: - fprintf(tikz_fd,"\\addplot[color=green, mark=o] plot coordinates {"); - break; - - case 8: - fprintf(tikz_fd,"\\addplot[color=yellow, mark=o] plot coordinates {"); - break; - - case 9: - fprintf(tikz_fd,"\\addplot[color=black, mark=o] plot coordinates {"); - break; - } - - for (i=0; i<2; i++) { - for (kk=0; kk<2; kk++) { - s_re_eNB[kk][i] = malloc(FRAME_LENGTH_COMPLEX_SAMPLES*sizeof(double)); - s_im_eNB[kk][i] = malloc(FRAME_LENGTH_COMPLEX_SAMPLES*sizeof(double)); - s_re_UE[kk][i] = malloc(FRAME_LENGTH_COMPLEX_SAMPLES*sizeof(double)); - s_im_UE[kk][i] = malloc(FRAME_LENGTH_COMPLEX_SAMPLES*sizeof(double)); - r_re_2eNB[kk][i] = malloc(FRAME_LENGTH_COMPLEX_SAMPLES*sizeof(double)); - r_im_2eNB[kk][i] = malloc(FRAME_LENGTH_COMPLEX_SAMPLES*sizeof(double)); - r_re_2UE[kk][i] = malloc(FRAME_LENGTH_COMPLEX_SAMPLES*sizeof(double)); - r_im_2UE[kk][i] = malloc(FRAME_LENGTH_COMPLEX_SAMPLES*sizeof(double)); - - for (ll=0; ll<2; ll++) { - r_re_eNB[kk][ll][i] = malloc(FRAME_LENGTH_COMPLEX_SAMPLES*sizeof(double)); - r_im_eNB[kk][ll][i] = malloc(FRAME_LENGTH_COMPLEX_SAMPLES*sizeof(double)); - r_re_UE[ll][kk][i] = malloc(FRAME_LENGTH_COMPLEX_SAMPLES*sizeof(double)); - r_im_UE[ll][kk][i] = malloc(FRAME_LENGTH_COMPLEX_SAMPLES*sizeof(double)); - } - } - } - - UL_alloc_pdu.type = 0; - UL_alloc_pdu.rballoc = computeRIV(PHY_vars_eNB[0]->lte_frame_parms.N_RB_UL,first_rb,nb_rb_UE);// 12 RBs from position 8 - printf("rballoc %d (dci %x)\n",UL_alloc_pdu.rballoc,*(uint32_t *)&UL_alloc_pdu); - UL_alloc_pdu.mcs = mcs_UE; - UL_alloc_pdu.ndi = 1; - UL_alloc_pdu.TPC = 0; - UL_alloc_pdu.cqi_req = 0; - UL_alloc_pdu.cshift = 0; - UL_alloc_pdu.dai = 1; - - //PHY_vars_UE->lte_ue_pdcch_vars[0]->crnti = n_rnti; - - for (kk=0; kk<2; kk++) { - PHY_vars_UE[kk]->lte_ue_pdcch_vars[0]->crnti = 14; - PHY_vars_UE[kk]->PHY_measurements.rank[0] = 0; - PHY_vars_UE[kk]->transmission_mode[0] = transmission_mode; - PHY_vars_UE[kk]->pucch_config_dedicated[0].tdd_AckNackFeedbackMode = bundling_flag == 1 ? bundling : multiplexing; - PHY_vars_UE[kk]->lte_frame_parms.pusch_config_common.ul_ReferenceSignalsPUSCH.groupHoppingEnabled = 1; - PHY_vars_UE[kk]->lte_frame_parms.pusch_config_common.ul_ReferenceSignalsPUSCH.sequenceHoppingEnabled = 0; - PHY_vars_UE[kk]->lte_frame_parms.pusch_config_common.ul_ReferenceSignalsPUSCH.groupAssignmentPUSCH = 0; - init_ul_hopping(&PHY_vars_UE[kk]->lte_frame_parms); - msg("Init UL hopping UE %d\n", kk); - - PHY_vars_eNB[kk]->transmission_mode[0] = transmission_mode; - PHY_vars_eNB[kk]->pucch_config_dedicated[0].tdd_AckNackFeedbackMode = bundling_flag == 1 ? bundling : multiplexing; - PHY_vars_eNB[kk]->lte_frame_parms.pusch_config_common.ul_ReferenceSignalsPUSCH.groupHoppingEnabled = 1; - PHY_vars_eNB[kk]->lte_frame_parms.pusch_config_common.ul_ReferenceSignalsPUSCH.sequenceHoppingEnabled = 0; - PHY_vars_eNB[kk]->lte_frame_parms.pusch_config_common.ul_ReferenceSignalsPUSCH.groupAssignmentPUSCH = 0; - msg("Init UL hopping eNB\n"); - - init_ul_hopping(&PHY_vars_eNB[kk]->lte_frame_parms); - - }//end kk - - // Fill in UL_alloc - CCCH_alloc_pdu.type = 0; - CCCH_alloc_pdu.vrb_type = 0; - //CCCH_alloc_pdu.rballoc = CCCH_RB_ALLOC; - CCCH_alloc_pdu.ndi = 1; - CCCH_alloc_pdu.mcs = 1; - CCCH_alloc_pdu.harq_pid = 0; - //modif start UL - DLSCH_alloc_pdu2.rah = 0; - DLSCH_alloc_pdu2.rballoc = DLSCH_RB_ALLOC; - DLSCH_alloc_pdu2.TPC = 0; - DLSCH_alloc_pdu2.dai = 0; - DLSCH_alloc_pdu2.harq_pid = 0; - DLSCH_alloc_pdu2.tb_swap = 0; - DLSCH_alloc_pdu2.mcs1 = mcs_UE;//to check - DLSCH_alloc_pdu2.ndi1 = 1; - DLSCH_alloc_pdu2.rv1 = 0; - // Forget second codeword - DLSCH_alloc_pdu2.tpmi = 5 ; // precoding - //modif end UL - - DLSCH_alloc_pdu2_2D[0].rah = 0; - DLSCH_alloc_pdu2_2D[0].rballoc = DLSCH_RB_ALLOC; - DLSCH_alloc_pdu2_2D[0].TPC = 0; - DLSCH_alloc_pdu2_2D[0].dai = 0; - DLSCH_alloc_pdu2_2D[0].harq_pid = 0; - DLSCH_alloc_pdu2_2D[0].tb_swap = 0; - DLSCH_alloc_pdu2_2D[0].mcs1 = mcs_eNB; - DLSCH_alloc_pdu2_2D[0].ndi1 = 1; - DLSCH_alloc_pdu2_2D[0].rv1 = 0; - // Forget second codeword - DLSCH_alloc_pdu2_2D[0].tpmi = (transmission_mode>=5 ? 5 : 0); // precoding - DLSCH_alloc_pdu2_2D[0].dl_power_off = (transmission_mode==5 ? 0 : 1); - - DLSCH_alloc_pdu2_2D[1].rah = 0; - DLSCH_alloc_pdu2_2D[1].rballoc = DLSCH_RB_ALLOC; - DLSCH_alloc_pdu2_2D[1].TPC = 0; - DLSCH_alloc_pdu2_2D[1].dai = 0; - DLSCH_alloc_pdu2_2D[1].harq_pid = 0; - DLSCH_alloc_pdu2_2D[1].tb_swap = 0; - DLSCH_alloc_pdu2_2D[1].mcs1 = mcs_eNB; - DLSCH_alloc_pdu2_2D[1].ndi1 = 1; - DLSCH_alloc_pdu2_2D[1].rv1 = 0; - // Forget second codeword - DLSCH_alloc_pdu2_2D[1].tpmi = (transmission_mode>=5 ? 5 : 0); // precoding - DLSCH_alloc_pdu2_2D[1].dl_power_off = (transmission_mode==5 ? 0 : 1); - - for (kk=0; kk<2; kk++) { - PHY_vars_eNB[kk]->dlsch_eNB_SI = new_eNB_dlsch(1,1,0); - PHY_vars_eNB[kk]->dlsch_eNB_SI->rnti = SI_RNTI; - - PHY_vars_eNB[kk]->lte_frame_parms.soundingrs_ul_config_common.srs_BandwidthConfig = 2; - PHY_vars_eNB[kk]->lte_frame_parms.soundingrs_ul_config_common.srs_SubframeConfig = 7; - - PHY_vars_eNB[kk]->soundingrs_ul_config_dedicated[UE_id].srs_ConfigIndex = 1; - PHY_vars_eNB[kk]->soundingrs_ul_config_dedicated[UE_id].srs_Bandwidth = 0; - PHY_vars_eNB[kk]->soundingrs_ul_config_dedicated[UE_id].transmissionComb = 0; - PHY_vars_eNB[kk]->soundingrs_ul_config_dedicated[UE_id].freqDomainPosition = 0; - PHY_vars_eNB[kk]->cooperation_flag = cooperation_flag; - - PHY_vars_eNB[kk]->pusch_config_dedicated[UE_id].betaOffset_ACK_Index = beta_ACK; - PHY_vars_eNB[kk]->pusch_config_dedicated[UE_id].betaOffset_RI_Index = beta_RI; - PHY_vars_eNB[kk]->pusch_config_dedicated[UE_id].betaOffset_CQI_Index = beta_CQI; - - PHY_vars_eNB[kk]->ulsch_eNB[0] = new_eNB_ulsch(3,0); - // Create transport channel structures for SI pdus - PHY_vars_UE[kk]->dlsch_ue_SI[0] = new_ue_dlsch(1,1,0); - PHY_vars_UE[kk]->dlsch_ue_SI[0]->rnti = SI_RNTI; - PHY_vars_UE[kk]->lte_frame_parms.soundingrs_ul_config_common.srs_BandwidthConfig = 2; - PHY_vars_UE[kk]->lte_frame_parms.soundingrs_ul_config_common.srs_SubframeConfig = 7; - PHY_vars_UE[kk]->soundingrs_ul_config_dedicated[eNB_id].srs_Bandwidth = 0; - PHY_vars_UE[kk]->soundingrs_ul_config_dedicated[eNB_id].transmissionComb = 0; - PHY_vars_UE[kk]->soundingrs_ul_config_dedicated[eNB_id].freqDomainPosition = 0; - - PHY_vars_UE[kk]->pusch_config_dedicated[eNB_id].betaOffset_ACK_Index = beta_ACK; - PHY_vars_UE[kk]->pusch_config_dedicated[eNB_id].betaOffset_RI_Index = beta_RI; - PHY_vars_UE[kk]->pusch_config_dedicated[eNB_id].betaOffset_CQI_Index = beta_CQI; - PHY_vars_UE[kk]->ulsch_ue[0] = new_ue_ulsch(3,0); - - for (ll=0; ll<2; ll++) { - eNB2UE[kk][ll] = new_channel_desc_scm(PHY_vars_eNB[kk]->lte_frame_parms.nb_antennas_tx, - PHY_vars_UE[ll]->lte_frame_parms.nb_antennas_rx, - channel_model, - BW, - forgetting_factor, - rx_sample_offset, - (kk==ll ? 0 : -100)); - - UE2eNB[ll][kk] = new_channel_desc_scm(PHY_vars_UE[ll]->lte_frame_parms.nb_antennas_tx,//b - PHY_vars_eNB[kk]->lte_frame_parms.nb_antennas_rx,//b - channel_model, - BW, - forgetting_factor, - 0, //rx_sample_offset - (kk==ll ? 0 : -100)); - - if (eNB2UE[kk][ll]==NULL) { - msg("Problem generating channel model. Exiting.\n"); - exit(-1); - } - } - - printf("PUSCH Beta : ACK %f, RI %f, CQI %f\n",(double)beta_ack[beta_ACK]/8,(double)beta_ri[beta_RI]/8,(double)beta_cqi[beta_CQI]/8); - - // Create transport channel structures for 2 transport blocks (MIMO) - for (i=0; i<2; i++) { - PHY_vars_eNB[kk]->dlsch_eNB[0][i] = new_eNB_dlsch(1,8,0); - - if (!PHY_vars_eNB[kk]->dlsch_eNB[0][i]) { - printf("Can't get eNB dlsch structures\n"); - exit(-1); - } - - PHY_vars_eNB[kk]->dlsch_eNB[0][i]->rnti = n_rnti+0; - } - - for (i=0; i<2; i++) { - PHY_vars_UE[kk]->dlsch_ue[0][i] = new_ue_dlsch(1,8,0); - - if (!PHY_vars_UE[kk]->dlsch_ue[0][i]) { - printf("Can't get ue dlsch structures for ant %d\n", kk); - exit(-1); - } - - PHY_vars_UE[kk]->dlsch_ue[0][i]->rnti = n_rnti; //b Check rnti numb - } - - generate_ue_ulsch_params_from_dci((void *)&UL_alloc_pdu, - 14, - (subframe_UL<4)?(subframe_UL+6):(subframe_UL-4), - format0, - PHY_vars_UE[kk], - SI_RNTI, - RA_RNTI, - P_RNTI, - 0, - srs_flag); - - PHY_vars_UE[kk]->ulsch_ue[0]->o_ACK[0] = 1; - - - generate_eNB_ulsch_params_from_dci((DCI0_5MHz_TDD_1_6_t *)&UL_alloc_pdu, - 14, - (subframe_UL<4)?(subframe_UL+6):(subframe_UL-4), - format0, - 0, - PHY_vars_eNB[kk], - SI_RNTI, - RA_RNTI, - P_RNTI, - srs_flag); - - if (DLSCH_alloc_pdu2_2D[0].tpmi == 5) - PHY_vars_eNB[kk]->eNB_UE_stats[0].DL_pmi_single = (unsigned short)(taus()&0xffff); - else - PHY_vars_eNB[kk]->eNB_UE_stats[0].DL_pmi_single = 0; - - - - if (input_fd==NULL) { - - printf("Generating dlsch params for user\n"); - generate_eNB_dlsch_params_from_dci(0, - &DLSCH_alloc_pdu2_2D[0], - n_rnti+0, - format2_2D_M10PRB, - PHY_vars_eNB[kk]->dlsch_eNB[0], - &PHY_vars_eNB[kk]->lte_frame_parms, - SI_RNTI, - RA_RNTI, - P_RNTI, - PHY_vars_eNB[kk]->eNB_UE_stats[0].DL_pmi_single); - - num_dci = 0; - num_ue_spec_dci = 0; - num_common_dci = 0; - - - // UE specific DCI - memcpy(&dci_alloc[num_dci].dci_pdu[0],&DLSCH_alloc_pdu2_2D[0],sizeof(DCI2_5MHz_2D_M10PRB_TDD_t)); - dci_alloc[num_dci].dci_length = sizeof_DCI2_5MHz_2D_M10PRB_TDD_t; - dci_alloc[num_dci].L = 2; - dci_alloc[num_dci].rnti = n_rnti+0; - dci_alloc[num_dci].format = format2_2D_M10PRB; - - dump_dci(&PHY_vars_eNB[kk]->lte_frame_parms,&dci_alloc[num_dci]); - - num_dci++; - num_ue_spec_dci++; - - input_buffer_length[kk] = PHY_vars_eNB[kk]->dlsch_eNB[0][0]->harq_processes[0]->TBS/8; - input_buffer[kk] = (unsigned char *)malloc(input_buffer_length[kk]+4); - memset(input_buffer[kk],0,input_buffer_length[kk]+4); - - if (input_trch_file==0) { - for (i=0; i<input_buffer_length[kk]; i++) { - input_buffer[kk][i]= (unsigned char)(taus()&0xff); - } - } - - else { - i=0; - - while ((!feof(input_trch_fd)) && (i<input_buffer_length[kk]<<3)) { - fscanf(input_trch_fd,"%s",input_trch_val); - - if (input_trch_val[0] == '1') - input_buffer[kk][i>>3]+=(1<<(7-(i&7))); - - if (i<16) - printf("input_trch_val %d : %c\n",i,input_trch_val[0]); - - i++; - - if (((i%8) == 0) && (i<17)) - printf("%x\n",input_buffer[kk][(i-1)>>3]); - } - - printf("Read in %d bits\n",i); - } - } - - - - if (PHY_vars_eNB[kk]->lte_frame_parms.Ncp == 0) { // normal prefix - pilot1 = 4; - pilot2 = 7; - pilot3 = 11; - } else { // extended prefix - pilot1 = 3; - pilot2 = 6; - pilot3 = 9; - } - }// end kk - - int prec_length = 2*nsymb*PHY_vars_eNB[0]->lte_frame_parms.ofdm_symbol_size; - short prec[prec_length]; - double Norm[prec_length]; - - for (ch_realization=0; ch_realization<n_ch_rlz; ch_realization++) { - if(abstx) { - printf("**********************Channel Realization Index = %d **************************\n", ch_realization); - } - - for (SNR=snr0; SNR<snr1; SNR+=snr_step) { - - P_eNb_active = 0; - - for (kk=0; kk<2; kk++) { - for (aa=0; aa<4; aa++) { - errs_eNB[kk][aa]=0; - round_trials_eNB[kk][aa] = 0; - errs_UE[kk][aa]=0; - round_trials_UE[kk][aa] = 0; - } - - for (ll=0; ll<2; ll++) { - random_channel(eNB2UE[kk][ll]); - UE2eNB[ll][kk] = eNB2UE[kk][ll]; - }//end ll - - round_UE[kk] = 0; - round_eNB[kk] = 0; - dci_errors[kk] = 0; - avg_ber[kk] = 0; - }//end kk - - - llb=0; - - randominit(0); - - for (kk=0; kk<2; kk++) {//kk for UE - - harq_pid[kk] = subframe2harq_pid(&PHY_vars_UE[kk]->lte_frame_parms,subframe_UL); - - if (input_fd == NULL) { - input_buffer_length_UE[kk] = PHY_vars_UE[kk]->ulsch_ue[0]->harq_processes[harq_pid[kk]]->TBS/8; - - //input_buffer_UE = (unsigned char *)malloc(input_buffer_length_UE+4);//b - input_buffer_UE[kk] = (char *)malloc(input_buffer_length_UE[kk]+4);//b - mac_xface->frame=1; - - if (n_frames == 1) { - trch_out_fd = fopen("ulsch_trch.txt","w"); - - for (i=0; i<input_buffer_length_UE[kk]; i++) { - input_buffer_UE[kk][i] = taus()&0xff; - - for (j=0; j<8; j++) - fprintf(trch_out_fd,"%d\n",(input_buffer_UE[kk][i]>>(7-j))&1); - } //exit(-1); - - fclose(trch_out_fd); - } - } else { - n_frames=1; - i=0; - - while (!feof(input_fd)) { - fscanf(input_fd,"%s %s",input_val_str,input_val_str2);//&input_val1,&input_val2); - - if ((i%4)==0) { - ((short*)txdata_UE[kk][0])[i/2] = (short)((1<<15)*strtod(input_val_str,NULL)); - ((short*)txdata_UE[kk][0])[(i/2)+1] = (short)((1<<15)*strtod(input_val_str2,NULL)); - - if ((i/4)<100) - printf("sample %d => %e + j%e (%d +j%d)\n",i/4,strtod(input_val_str,NULL),strtod(input_val_str2,NULL),((short*)txdata_UE[kk][0])[i/4],((short*)txdata_UE[kk][0])[(i/4)+1]);//1,input_val2,); - } - - i++; - - if (i>(FRAME_LENGTH_SAMPLES)) - break; - } - - printf("Read in %d samples\n",i/4); - write_output("txsig0_UE.m","txs0_UE", txdata_UE[kk][0],2*frame_parms->samples_per_tti,1,1); - - tx_lev_UE[kk] = signal_energy(&txdata_UE[kk][0][0], - OFDM_SYMBOL_SIZE_COMPLEX_SAMPLES); - tx_lev_UE_dB[kk] = (unsigned int) dB_fixed(tx_lev_UE[kk]); - } - }// end kk - - for (trials = 0; trials<n_frames; trials++) { - // printf("Trial %d\n",trials); - fflush(stdout); - - for (kk=0; kk<2; kk++) { - round_eNB[kk]=0; - round_UE[kk]=0; - - for (ll=0; ll<2; ll++) - eNB2UE[kk][ll]->first_run = 1; - } - - while ((round_eNB[0] < num_rounds)||(round_eNB[1] < num_rounds)) { - - - if(transmission_mode>=5) - pmi_feedback=1; - else - pmi_feedback=0; - -PMI_FEEDBACK: - - for (kk=0; kk<2; kk++) { - round_trials_eNB[kk][round_eNB[kk]]++; - round_trials_UE[kk][round_UE[kk]]++; - - for (aa=0; aa<PHY_vars_eNB[kk]->lte_frame_parms.nb_antennas_tx; aa++) { -#ifdef IFFT_FPGA - memset(&PHY_vars_eNB[kk]->lte_eNB_common_vars.txdataF[eNB_id][aa][0],0,NUMBER_OF_USEFUL_CARRIERS*NUMBER_OF_SYMBOLS_PER_FRAME*sizeof(mod_sym_t)); -#else - memset(&PHY_vars_eNB[kk]->lte_eNB_common_vars.txdataF[eNB_id][aa][0],0,FRAME_LENGTH_COMPLEX_SAMPLES_NO_PREFIX*sizeof(mod_sym_t)); -#endif - } - - if (input_fd==NULL) { - - if (round_UE[kk] == 0) { - PHY_vars_eNB[kk]->ulsch_eNB[0]->harq_processes[0]->Ndi = 1; - PHY_vars_eNB[kk]->ulsch_eNB[0]->harq_processes[0]->rvidx = round_UE[kk]>>1; - - PHY_vars_UE[kk]->ulsch_ue[0]->harq_processes[0]->Ndi = 1; - PHY_vars_UE[kk]->ulsch_ue[0]->harq_processes[0]->rvidx = round_UE[kk]>>1; - } else { - PHY_vars_eNB[kk]->ulsch_eNB[0]->harq_processes[0]->Ndi = 0; - PHY_vars_eNB[kk]->ulsch_eNB[0]->harq_processes[0]->rvidx = round_UE[kk]>>1; - PHY_vars_UE[kk]->ulsch_ue[0]->harq_processes[0]->Ndi = 0; - PHY_vars_UE[kk]->ulsch_ue[0]->harq_processes[0]->rvidx = round_UE[kk]>>1; - } - - if (round_eNB[kk] == 0) { - PHY_vars_eNB[kk]->dlsch_eNB[0][0]->harq_processes[0]->Ndi = 1; - PHY_vars_eNB[kk]->dlsch_eNB[0][0]->harq_processes[0]->rvidx = round_eNB[kk]>>1; - DLSCH_alloc_pdu2_2D[0].ndi1 = 1; - DLSCH_alloc_pdu2_2D[0].rv1 = 0; - memcpy(&dci_alloc[0].dci_pdu[0],&DLSCH_alloc_pdu2_2D[0],sizeof(DCI2_5MHz_2D_M10PRB_TDD_t)); - } else { - - PHY_vars_eNB[kk]->dlsch_eNB[0][0]->harq_processes[0]->Ndi = 0; - PHY_vars_eNB[kk]->dlsch_eNB[0][0]->harq_processes[0]->rvidx = round_eNB[kk]>>1; - DLSCH_alloc_pdu2_2D[0].ndi1 = 0; - DLSCH_alloc_pdu2_2D[0].rv1 = round_eNB[kk]>>1; - memcpy(&dci_alloc[0].dci_pdu[0],&DLSCH_alloc_pdu2_2D[0],sizeof(DCI2_5MHz_2D_M10PRB_TDD_t)); - } - - //********************** DL part **************************************************************************** - num_pdcch_symbols_2 = generate_dci_top(num_ue_spec_dci, - num_common_dci, - dci_alloc, - 0, - 1024, - &PHY_vars_eNB[kk]->lte_frame_parms, - PHY_vars_eNB[kk]->lte_eNB_common_vars.txdataF[eNB_id], - subframe_DL); - - if (num_pdcch_symbols_2 > num_pdcch_symbols) { - msg("Error: given num_pdcch_symbols not big enough\n"); - exit(-1); - } - - coded_bits_per_codeword = get_G(&PHY_vars_eNB[kk]->lte_frame_parms, - PHY_vars_eNB[kk]->dlsch_eNB[0][0]->nb_rb, - PHY_vars_eNB[kk]->dlsch_eNB[0][0]->rb_alloc, - get_Qm(PHY_vars_eNB[kk]->dlsch_eNB[0][0]->harq_processes[0]->mcs), - num_pdcch_symbols, - subframe_DL); - -#ifdef TBS_FIX - tbs = (double)3*dlsch_tbs25[get_I_TBS(PHY_vars_eNB[kk]->dlsch_eNB[0][0]->harq_processes[0]->mcs)][PHY_vars_eNB[kk]->dlsch_eNB[0][0]->nb_rb-1]/4; -#else - tbs = (double)dlsch_tbs25[get_I_TBS(PHY_vars_eNB[kk]->dlsch_eNB[0][0]->harq_processes[0]->mcs)][PHY_vars_eNB[kk]->dlsch_eNB[0][0]->nb_rb-1]; -#endif - - rate_eNB = (double)tbs/(double)coded_bits_per_codeword; - - uncoded_ber_bit = (short*) malloc(2*coded_bits_per_codeword); - - if (trials==0 && round_eNB[0]==0 && kk==0) - printf("\nRate = %f (G %d, TBS %d, TBS_UE[%d] %d, mod %d, pdcch_sym %d)\n", - rate_eNB, - coded_bits_per_codeword, - tbs, - kk, - PHY_vars_UE[kk]->ulsch_ue[0]->harq_processes[harq_pid[0]]->TBS, - get_Qm(PHY_vars_eNB[kk]->dlsch_eNB[0][0]->harq_processes[0]->mcs), - num_pdcch_symbols); - - - // use the PMI from previous trial - if (DLSCH_alloc_pdu2_2D[0].tpmi == 5) { - PHY_vars_eNB[kk]->dlsch_eNB[0][0]->pmi_alloc = quantize_subband_pmi(&PHY_vars_UE[kk]->PHY_measurements,0); - PHY_vars_UE[kk]->dlsch_ue[0][0]->pmi_alloc = quantize_subband_pmi(&PHY_vars_UE[kk]->PHY_measurements,0); - } - - if (dlsch_encoding(input_buffer[kk], - &PHY_vars_eNB[kk]->lte_frame_parms, - num_pdcch_symbols, - PHY_vars_eNB[kk]->dlsch_eNB[0][0], - subframe_DL)<0) - exit(-1); - - // printf("Did not Crash here 1\n"); - PHY_vars_eNB[kk]->dlsch_eNB[0][0]->rnti = n_rnti+0; - dlsch_scrambling(&PHY_vars_eNB[kk]->lte_frame_parms, - num_pdcch_symbols, - PHY_vars_eNB[kk]->dlsch_eNB[0][0], - coded_bits_per_codeword, - 0, - subframe_DL<<1); - - if (transmission_mode == 5) { - amp = (int16_t)(((int32_t)1024*ONE_OVER_SQRT2_Q15)>>15); - } else - amp = 1024; - - re_allocated = dlsch_modulation(PHY_vars_eNB[kk]->lte_eNB_common_vars.txdataF[eNB_id], - amp, - subframe_DL, - &PHY_vars_eNB[kk]->lte_frame_parms, - num_pdcch_symbols, - PHY_vars_eNB[kk]->dlsch_eNB[0][0]); - - if (num_layers>1) - re_allocated = dlsch_modulation(PHY_vars_eNB[kk]->lte_eNB_common_vars.txdataF[eNB_id], - 1024, - subframe_DL, - &PHY_vars_eNB[kk]->lte_frame_parms, - num_pdcch_symbols, - PHY_vars_eNB[kk]->dlsch_eNB[0][1]); - - generate_pilots(PHY_vars_eNB[kk], - PHY_vars_eNB[kk]->lte_eNB_common_vars.txdataF[eNB_id], - 1024, - LTE_NUMBER_OF_SUBFRAMES_PER_FRAME); - -#ifdef IFFT_FPGA - - // do table lookup and write results to txdataF2 - for (aa=0; aa<PHY_vars_eNB[kk]->lte_frame_parms.nb_antennas_tx; aa++) { - ind = 0; - - for (i=0; i<FRAME_LENGTH_COMPLEX_SAMPLES_NO_PREFIX; i++) - if (((i%512)>=1) && ((i%512)<=150)) { - txdataF2_eNB[kk][aa][i] = ((int*)mod_table)[PHY_vars_eNB[kk]->lte_eNB_common_vars.txdataF[eNB_id][aa][ind++]]; - } else if ((i%512)>=362) { - txdataF2_eNB[kk][aa][i] = ((int*)mod_table)[PHY_vars_eNB[kk]->lte_eNB_common_vars.txdataF[eNB_id][aa][ind++]]; - } else { - txdataF2_eNB[kk][aa][i] = 0; - } - } - - for (aa=0; aa<PHY_vars_UE[kk]->lte_frame_parms.nb_antennas_tx; aa++) { - ind = 0; - - for (i=0; i<FRAME_LENGTH_COMPLEX_SAMPLES_NO_PREFIX; i++) - if (((i%512)>=1) && ((i%512)<=150)) { - txdataF2_UE[kk][aa][i] = ((int*)mod_table)[PHY_vars_UE[kk]->lte_ue_common_vars.txdataF[aa][ind++]]; - } else if ((i%512)>=362) { - txdataF2_UE[kk][aa][i] = ((int*)mod_table)[PHY_vars_UE[kk]->lte_ue_common_vars.txdataF[aa][ind++]]; - } else { - txdataF2_UE[kk][aa][i] = 0; - } - } - - tx_lev_eNB[kk] = 0; - - for (aa=0; aa<PHY_vars_eNB[kk]->lte_frame_parms.nb_antennas_tx; aa++) { - if (frame_parms->Ncp == 1) - PHY_ofdm_mod(&txdataF2_eNB[kk][aa][subframe_DL*nsymb*PHY_vars_eNB[kk]->lte_frame_parms.ofdm_symbol_size], // input - &txdata_eNB[kk][aa][subframe_DL*PHY_vars_eNB[kk]->lte_frame_parms.samples_per_tti], // output - PHY_vars_eNB[kk]->lte_frame_parms.log2_symbol_size, // log2_fft_size - 2*nsymb,//NUMBER_OF_SYMBOLS_PER_FRAME, // number of symbols - PHY_vars_eNB[kk]->lte_frame_parms.nb_prefix_samples, // number of prefix samples - PHY_vars_eNB[kk]->lte_frame_parms.twiddle_ifft, // IFFT twiddle factors - PHY_vars_eNB[kk]->lte_frame_parms.rev, // bit-reversal permutation - CYCLIC_PREFIX); - else { - normal_prefix_mod(&txdataF2_eNB[kk][aa][subframe_DL*nsymb*PHY_vars_eNB[kk]->lte_frame_parms.ofdm_symbol_size], - &txdata_eNB[kk][aa][subframe_DL*PHY_vars_eNB[kk]->lte_frame_parms.samples_per_tti], - 2*nsymb, - frame_parms); - } - - tx_lev_eNB[kk] += signal_energy(&txdata_eNB[kk][aa][(PHY_vars_eNB[kk]->lte_frame_parms.ofdm_symbol_size+PHY_vars_eNB[kk]->lte_frame_parms.nb_prefix_samples0)], - OFDM_SYMBOL_SIZE_COMPLEX_SAMPLES); - } - -#else //IFFT_FPGA - - //Precoding - if ((P_eNb_active == 1) && (kk == 1)) { - - for (aa=0; aa<PHY_vars_eNB[kk]->lte_frame_parms.nb_antennas_tx; aa++) { - - // write_output("txaF.m","txaF11", &PHY_vars_eNB[kk]->lte_eNB_common_vars.txdataF[eNB_id][0][0],(subframe_DL+1)*nsymb*PHY_vars_eNB[0]->lte_frame_parms.ofdm_symbol_size,1,1); - - /* - for (i=0; i<10; i++) { - printf("PHY_vars_eNB[%d]=%d\n", i, PHY_vars_eNB[kk]->lte_eNB_common_vars.txdataF[eNB_id][0][i+subframe_DL*nsymb*PHY_vars_eNB[kk]->lte_frame_parms.ofdm_symbol_size]); - printf("PHY_vars_eNB[%d]=%d\n", i, ((short *)PHY_vars_eNB[kk]->lte_eNB_common_vars.txdataF[eNB_id][0])[2*i+2*subframe_DL*nsymb*PHY_vars_eNB[kk]->lte_frame_parms.ofdm_symbol_size]); - printf("PHY_vars_eNB[%d]=%d\n", i, ((short *)PHY_vars_eNB[kk]->lte_eNB_common_vars.txdataF[eNB_id][0])[2*i+1+2*subframe_DL*nsymb*PHY_vars_eNB[kk]->lte_frame_parms.ofdm_symbol_size]); - }*/ - do_precoding(PHY_vars_eNB[kk], PHY_vars_UE[kk], PeNb_factor, prec, Norm, nsymb, UE_id, aa); - - //for (i=0; i<10; i++) - //printf("Norm[%d] = %d\n", i, prec[2*i]); - - //printf("subframe_DL*nsymb*PHY_vars_eNB[kk]->lte_frame_parms.ofdm_symbol_size = %d\n", subframe_DL*nsymb*PHY_vars_eNB[kk]->lte_frame_parms.ofdm_symbol_size); - - //for (i=0; i<10; i++) - //printf("enb[%d] = %d\n", i, ((short *)PHY_vars_eNB[kk]->lte_eNB_common_vars.txdataF[eNB_id][0])[2*i+subframe_DL*nsymb*PHY_vars_eNB[kk]->lte_frame_parms.ofdm_symbol_size]); - - - for (i=0; i<nsymb*PHY_vars_eNB[kk]->lte_frame_parms.ofdm_symbol_size; i++) { - - if ((prec[2*i]*prec[2*i] + prec[2*i+1]*prec[2*i+1]) != 0) { - ((short *)PHY_vars_eNB[kk]->lte_eNB_common_vars.txdataF[eNB_id][aa])[2*i+2*subframe_DL*nsymb*PHY_vars_eNB[kk]->lte_frame_parms.ofdm_symbol_size] = (short)((((( - short *)PHY_vars_eNB[kk]->lte_eNB_common_vars.txdataF[eNB_id][aa])[2*i+2*subframe_DL*nsymb*PHY_vars_eNB[kk]->lte_frame_parms.ofdm_symbol_size]*prec[2*i] + (( - short *)PHY_vars_eNB[kk]->lte_eNB_common_vars.txdataF[eNB_id][aa])[2*i+1+2*subframe_DL*nsymb*PHY_vars_eNB[kk]->lte_frame_parms.ofdm_symbol_size]*prec[2*i+1]))/ - (prec[2*i]*prec[2*i] + prec[2*i+1]*prec[2*i+1])); - ((short *)PHY_vars_eNB[kk]->lte_eNB_common_vars.txdataF[eNB_id][aa])[2*i+1+2*subframe_DL*nsymb*PHY_vars_eNB[kk]->lte_frame_parms.ofdm_symbol_size] = (short)((((( - short *)PHY_vars_eNB[kk]->lte_eNB_common_vars.txdataF[eNB_id][aa])[2*i+1+2*subframe_DL*nsymb*PHY_vars_eNB[kk]->lte_frame_parms.ofdm_symbol_size]*prec[2*i] - (( - short *)PHY_vars_eNB[kk]->lte_eNB_common_vars.txdataF[eNB_id][aa])[2*i+2*subframe_DL*nsymb*PHY_vars_eNB[kk]->lte_frame_parms.ofdm_symbol_size]*prec[2*i+1]))/ - (prec[2*i]*prec[2*i] + prec[2*i+1]*prec[2*i+1])); - } - } - - /*for (i=100; i<110; i++) { - printf("PHY_vars_eNB[%d]=%d\n", i, PHY_vars_eNB[kk]->lte_eNB_common_vars.txdataF[eNB_id][0][i+subframe_DL*nsymb*PHY_vars_eNB[kk]->lte_frame_parms.ofdm_symbol_size]); - printf("PHY_vars_eNB[%d]=%d\n", i, ((short *)PHY_vars_eNB[kk]->lte_eNB_common_vars.txdataF[eNB_id][0])[2*i+2*subframe_DL*nsymb*PHY_vars_eNB[kk]->lte_frame_parms.ofdm_symbol_size]); - printf("PHY_vars_eNB[%d]=%d\n", i, ((short *)PHY_vars_eNB[kk]->lte_eNB_common_vars.txdataF[eNB_id][0])[2*i+1+2*subframe_DL*nsymb*PHY_vars_eNB[kk]->lte_frame_parms.ofdm_symbol_size]); - printf("PREC[%d]=%d\n", i, prec[2*i]); - printf("PREC[%d]=%d\n", i, prec[2*i+1]); - //printf("Norm[%d] = %d\n", i, (short)Norm[2*i]); - //printf("Norm[%d] = %f\n", i, Norm[2*i]); - } - - exit(-1);*/ - }//aa - }//if - - //write_output("txaF.m","txaF", PHY_vars_eNB[kk]->lte_eNB_common_vars.txdataF[eNB_id][0],nsymb*PHY_vars_eNB[0]->lte_frame_parms.ofdm_symbol_size,1,1); - - tx_lev_eNB[kk] = 0; - - for (aa=0; aa<PHY_vars_eNB[kk]->lte_frame_parms.nb_antennas_tx; aa++) { - if (frame_parms->Ncp == 1) - PHY_ofdm_mod(&PHY_vars_eNB[kk]->lte_eNB_common_vars.txdataF[eNB_id][aa][subframe_DL*nsymb*PHY_vars_eNB[kk]->lte_frame_parms.ofdm_symbol_size], // input - &txdata_eNB[kk][aa][subframe_DL*PHY_vars_eNB[kk]->lte_frame_parms.samples_per_tti], // output - PHY_vars_eNB[kk]->lte_frame_parms.log2_symbol_size, // log2_fft_size - 2*nsymb,//NUMBER_OF_SYMBOLS_PER_FRAME, // number of symbols - PHY_vars_eNB[kk]->lte_frame_parms.nb_prefix_samples, // number of prefix samples - PHY_vars_eNB[kk]->lte_frame_parms.twiddle_ifft, // IFFT twiddle factors - PHY_vars_eNB[kk]->lte_frame_parms.rev, // bit-reversal permutation - CYCLIC_PREFIX); - else { - normal_prefix_mod(&PHY_vars_eNB[kk]->lte_eNB_common_vars.txdataF[eNB_id][aa][subframe_DL*nsymb*PHY_vars_eNB[kk]->lte_frame_parms.ofdm_symbol_size], - &txdata_eNB[kk][aa][subframe_DL*PHY_vars_eNB[kk]->lte_frame_parms.samples_per_tti], - 2*nsymb, - frame_parms); - } - - tx_lev_eNB[kk] += signal_energy(&txdata_eNB[kk][aa][subframe_DL*PHY_vars_eNB[kk]->lte_frame_parms.samples_per_tti], - PHY_vars_eNB[kk]->lte_frame_parms.samples_per_tti); - } - -#endif //IFFT_FPGA - tx_lev_eNB_dB[kk] = (unsigned int) dB_fixed(tx_lev_eNB[kk]); - - }// input_fd - else { // Read signal from file - i=0; - - while (!feof(input_fd)) { - fscanf(input_fd,"%s %s",input_val_str,input_val_str2); - - if ((i%4)==0) { - ((short*)txdata_eNB[kk][0])[i/2] = (short)((1<<15)*strtod(input_val_str,NULL)); - ((short*)txdata_eNB[kk][0])[(i/2)+1] = (short)((1<<15)*strtod(input_val_str2,NULL)); - - if ((i/4)<100) - printf("sample %d => %e + j%e (%d +j%d)\n",i/4,strtod(input_val_str,NULL),strtod(input_val_str2,NULL),((short*)txdata_eNB[kk][0])[i/4],((short*)txdata_eNB[kk][0])[(i/4)+1]);//1,input_val2,); - } - - i++; - - if (i>(FRAME_LENGTH_SAMPLES)) - break; - } - - printf("Read in %d samples\n",i/4); - - tx_lev_eNB[kk] = signal_energy(&txdata_eNB[kk][0][0], - OFDM_SYMBOL_SIZE_COMPLEX_SAMPLES); - tx_lev_eNB_dB[kk] = (unsigned int) dB_fixed(tx_lev_eNB[kk]); - }// else read from file - - for (i=0; i<2*nsymb*OFDM_SYMBOL_SIZE_COMPLEX_SAMPLES; i++) { - for (aa=0; aa<PHY_vars_eNB[kk]->lte_frame_parms.nb_antennas_tx; aa++) { - if (awgn_flag == 0) { - s_re_eNB[kk][aa][i] = ((double)(((short *)txdata_eNB[kk][aa]))[(2*subframe_DL*PHY_vars_UE[kk]->lte_frame_parms.samples_per_tti) + (i<<1)]); - s_im_eNB[kk][aa][i] = ((double)(((short *)txdata_eNB[kk][aa]))[(2*subframe_DL*PHY_vars_UE[kk]->lte_frame_parms.samples_per_tti) +(i<<1)+1]); - } else { - for (aarx=0; aarx<PHY_vars_UE[kk]->lte_frame_parms.nb_antennas_rx; aarx++) { - for (ll=0; ll<2; ll++) { - if (ll==kk) { - if (aa==0) { - r_re_eNB[kk][ll][aarx][i] = ((double)(((short *)txdata_eNB[kk][aa]))[(2*subframe_DL*PHY_vars_UE[kk]->lte_frame_parms.samples_per_tti) +(i<<1)]); - r_im_eNB[kk][ll][aarx][i] = ((double)(((short *)txdata_eNB[kk][aa]))[(2*subframe_DL*PHY_vars_UE[kk]->lte_frame_parms.samples_per_tti) +(i<<1)+1]); - } else { - r_re_eNB[kk][ll][aarx][i] += ((double)(((short *)txdata_eNB[kk][aa]))[(2*subframe_DL*PHY_vars_UE[kk]->lte_frame_parms.samples_per_tti) +(i<<1)]); - r_im_eNB[kk][ll][aarx][i] += ((double)(((short *)txdata_eNB[kk][aa]))[(2*subframe_DL*PHY_vars_UE[kk]->lte_frame_parms.samples_per_tti) +(i<<1)+1]); - } - } else { - r_re_eNB[kk][ll][aarx][i] = 0; - r_im_eNB[kk][ll][aarx][i] = 0; - } - } - } - } - - r_re_2eNB[kk][aa][i] = 0; - r_im_2eNB[kk][aa][i] = 0; - } - } - - // filtre RF tx -> s_re - if ((decalibration == 1) && (kk == 1)) { - for (aa=0; aa<PHY_vars_eNB[kk]->lte_frame_parms.nb_antennas_tx; aa++) { - real_fir(s_re_eNB[kk][aa], s_im_eNB[kk][aa], s_re_out, s_im_out, s_coeffs_eNB, s_ord_fir_eNB, 2*nsymb*OFDM_SYMBOL_SIZE_COMPLEX_SAMPLES); - - for (i=0; i<2*nsymb*OFDM_SYMBOL_SIZE_COMPLEX_SAMPLES; i++) { - s_re_eNB[kk][aa][i] = s_re_out[i]; - s_im_eNB[kk][aa][i] = s_im_out[i]; - } - } - } - - // n0_pow_dB = tx_lev_dB + 10*log10(512/(NB_RB*12)) + SNR; - // generate new channel if pmi_feedback==0, otherwise hold channel - for (ll=0; ll<2; ll++) { - if(abstx) { - if (trials==0 && round_eNB[kk]==0) { - if (awgn_flag == 0) { - - if(SNR==snr0) { - if(pmi_feedback==0) - multipath_channel(eNB2UE[kk][ll],s_re_eNB[kk],s_im_eNB[kk],r_re_eNB[kk][ll],r_im_eNB[kk][ll], - 2*nsymb*OFDM_SYMBOL_SIZE_COMPLEX_SAMPLES,1); - else - multipath_channel(eNB2UE[kk][ll],s_re_eNB[kk],s_im_eNB[kk],r_re_eNB[kk][ll],r_im_eNB[kk][ll], - 2*nsymb*OFDM_SYMBOL_SIZE_COMPLEX_SAMPLES,1);//b - } else { - multipath_channel(eNB2UE[kk][ll],s_re_eNB[kk],s_im_eNB[kk],r_re_eNB[kk][ll],r_im_eNB[kk][ll], - 2*nsymb*OFDM_SYMBOL_SIZE_COMPLEX_SAMPLES,1); - } - - freq_channel(eNB2UE[kk][ll], 25,51); - snr=pow(10.0,.1*SNR); - fprintf(csv_fd,"%f,",SNR); - - for (u=0; u<50; u++) { - abs_channel = (eNB2UE[kk][ll]->chF[0][u].x*eNB2UE[kk][ll]->chF[0][u].x + eNB2UE[kk][ll]->chF[0][u].y*eNB2UE[kk][ll]->chF[0][u].y); - - if(transmission_mode==5) { - fprintf(csv_fd,"%e,",abs_channel); - } else { - pilot_sinr = 10*log10(snr*abs_channel); - fprintf(csv_fd,"%e,",pilot_sinr); - } - } - } - } - - else { - if (awgn_flag == 0) { - multipath_channel(eNB2UE[kk][ll],s_re_eNB[kk],s_im_eNB[kk],r_re_eNB[kk][ll],r_im_eNB[kk][ll], - 2*nsymb*OFDM_SYMBOL_SIZE_COMPLEX_SAMPLES,1); - } - } - } - - else { //ABStraction - if (awgn_flag == 0) { - - if (pmi_feedback==0) { - if (trials<n_K-1) - multipath_channel(eNB2UE[kk][ll],s_re_eNB[kk],s_im_eNB[kk],r_re_eNB[kk][ll],r_im_eNB[kk][ll], - 2*nsymb*OFDM_SYMBOL_SIZE_COMPLEX_SAMPLES,1);//b - else - multipath_channel(eNB2UE[kk][ll],s_re_eNB[kk],s_im_eNB[kk],r_re_eNB[kk][ll],r_im_eNB[kk][ll], - 2*nsymb*OFDM_SYMBOL_SIZE_COMPLEX_SAMPLES,1);//b - } else - multipath_channel(eNB2UE[kk][ll],s_re_eNB[kk],s_im_eNB[kk],r_re_eNB[kk][ll],r_im_eNB[kk][ll], - 2*nsymb*OFDM_SYMBOL_SIZE_COMPLEX_SAMPLES,1);//b - } - }//ABStraction - - if ((phase_offset == 1) && (kk == 1) && (ll == 1)) { - for (aa=0; aa<PHY_vars_UE[kk]->lte_frame_parms.nb_antennas_rx; aa++) { - phase_offsets(r_re_eNB[kk][ll][aa], r_im_eNB[kk][ll][aa], r_re_out, r_im_out, 2*nsymb*OFDM_SYMBOL_SIZE_COMPLEX_SAMPLES, &phase_in_DL, phase_inc, 1); - - for (i=0; i<2*nsymb*OFDM_SYMBOL_SIZE_COMPLEX_SAMPLES; i++) { - r_re_eNB[kk][ll][aa][i] = r_re_out[i]; - r_im_eNB[kk][ll][aa][i] = r_im_out[i]; - } - } - } - - // filtre RF rx -> r_re_eNB - if ((decalibration == 1) && (kk == 1) && (ll == 1)) { - for (aa=0; aa<PHY_vars_UE[kk]->lte_frame_parms.nb_antennas_rx; aa++) { - real_fir(r_re_eNB[kk][ll][aa], r_im_eNB[kk][ll][aa], r_re_out, r_im_out, r_coeffs_eNB, r_ord_fir_eNB, 2*nsymb*OFDM_SYMBOL_SIZE_COMPLEX_SAMPLES); - - for (i=0; i<2*nsymb*OFDM_SYMBOL_SIZE_COMPLEX_SAMPLES; i++) { - r_re_eNB[kk][ll][aa][i] = r_re_out[i]; - r_im_eNB[kk][ll][aa][i] = r_im_out[i]; - } - } - } - }//end ll - }//end kk - - for (kk=0; kk<2; kk++) { - for (ll=0; ll<2; ll++) { - for (i=0; i<2*nsymb*OFDM_SYMBOL_SIZE_COMPLEX_SAMPLES; i++) { - for (aarx=0; aarx<PHY_vars_UE[kk]->lte_frame_parms.nb_antennas_rx; aarx++) { - r_re_2eNB[kk][aarx][i] += r_re_eNB[ll][kk][aarx][i]; - r_im_2eNB[kk][aarx][i] += r_im_eNB[ll][kk][aarx][i]; - } - } - } - - - - sigma2_eNB_dB[kk] = 10*log10((double)tx_lev_eNB[kk]) +10*log10(PHY_vars_eNB[kk]->lte_frame_parms.ofdm_symbol_size/(NB_RB*12)) - SNR; - - //AWGN - sigma2_eNB[kk] = pow(10,sigma2_eNB_dB[kk]/10); - - if (pmi_feedback==0) { - for (i=0; i<2*nsymb*OFDM_SYMBOL_SIZE_COMPLEX_SAMPLES; i++) { - for (aa=0; aa<PHY_vars_UE[kk]->lte_frame_parms.nb_antennas_rx; aa++) { - ((short*) PHY_vars_UE[kk]->lte_ue_common_vars.rxdata[aa])[(2*subframe_DL*PHY_vars_UE[kk]->lte_frame_parms.samples_per_tti)+2*i] = - (short) (r_re_2eNB[kk][aa][i] + sqrt(sigma2_eNB[kk]/2)*gaussdouble(0.0,1.0)); - ((short*) PHY_vars_UE[kk]->lte_ue_common_vars.rxdata[aa])[(2*subframe_DL*PHY_vars_UE[kk]->lte_frame_parms.samples_per_tti)+2*i+1] = - (short) (r_im_2eNB[kk][aa][i] + (iqim*r_re_2eNB[kk][aa][i]) + sqrt(sigma2_eNB[kk]/2)*gaussdouble(0.0,1.0)); - } - } - } else { - for (i=0; i<2*nsymb*OFDM_SYMBOL_SIZE_COMPLEX_SAMPLES; i++) { - for (aa=0; aa<PHY_vars_UE[kk]->lte_frame_parms.nb_antennas_rx; aa++) { - ((short*) PHY_vars_UE[kk]->lte_ue_common_vars.rxdata[aa])[(2*subframe_DL*PHY_vars_UE[kk]->lte_frame_parms.samples_per_tti)+2*i] = (short) (r_re_2eNB[kk][aa][i]); - ((short*) PHY_vars_UE[kk]->lte_ue_common_vars.rxdata[aa])[(2*subframe_DL*PHY_vars_UE[kk]->lte_frame_parms.samples_per_tti)+2*i+1] = (short) (r_im_2eNB[kk][aa][i]); - } - } - } - - // Inner receiver scheduling for 3 slots - for (Ns=(2*subframe_DL); Ns<((2*subframe_DL)+3); Ns++) { - for (l=0; l<pilot2; l++) { - slot_fep(PHY_vars_UE[kk], - l, - Ns%20, - 0, - 0); - -#ifdef PERFECT_CE - - if (awgn_flag==0) { - // fill in perfect channel estimates - freq_channel(eNB2UE[kk][kk],PHY_vars_UE[kk]->lte_frame_parms.N_RB_DL,301); - - //write_output("channel.m","ch",desc1->ch[0],desc1->channel_length,1,8); - //write_output("channelF.m","chF",desc1->chF[0],nb_samples,1,8); - for(k=0; k<NUMBER_OF_eNB_MAX; k++) { - for(aa=0; aa<PHY_vars_eNB[kk]->lte_frame_parms.nb_antennas_tx; aa++) { - for (aarx=0; aarx<PHY_vars_UE[kk]->lte_frame_parms.nb_antennas_rx; aarx++) { - for (i=0; i<frame_parms->N_RB_DL*12; i++) { - ((int16_t *) PHY_vars_UE[kk]->lte_ue_common_vars.dl_ch_estimates[k][(aa<<1)+aarx])[2*i+(l*frame_parms->ofdm_symbol_size+LTE_CE_FILTER_LENGTH)*2]=(int16_t)( - eNB2UE[kk][kk]->chF[aarx+(aa*PHY_vars_UE[kk]->lte_frame_parms.nb_antennas_rx)][i].x*AMP/2); - ((int16_t *) PHY_vars_UE[kk]->lte_ue_common_vars.dl_ch_estimates[k][(aa<<1)+aarx])[2*i+1+(l*frame_parms->ofdm_symbol_size+LTE_CE_FILTER_LENGTH)*2]=(int16_t)( - eNB2UE[kk][kk]->chF[aarx+(aa*PHY_vars_UE[kk]->lte_frame_parms.nb_antennas_rx)][i].y*AMP/2) ; - } - } - } - } - } else { - for(aa=0; aa<PHY_vars_eNB[kk]->lte_frame_parms.nb_antennas_tx; aa++) { - for (aarx=0; aarx<PHY_vars_UE[kk]->lte_frame_parms.nb_antennas_rx; aarx++) { - for (i=0; i<frame_parms->N_RB_DL*12; i++) { - ((int16_t *) PHY_vars_UE[kk]->lte_ue_common_vars.dl_ch_estimates[0][(aa<<1)+aarx])[2*i+(l*frame_parms->ofdm_symbol_size+LTE_CE_FILTER_LENGTH)*2]=AMP/2; - ((int16_t *) PHY_vars_UE[kk]->lte_ue_common_vars.dl_ch_estimates[0][(aa<<1)+aarx])[2*i+1+(l*frame_parms->ofdm_symbol_size+LTE_CE_FILTER_LENGTH)*2]=0/2; - } - } - } - } - -#endif - - if (trials<=n_K) { - - do_quantization_UE(PHY_vars_UE[kk], - nsymb, - pilot1-1, - quant_v, - dl_ch_estimates[kk], - dec_f); - } - - }//Ns - }//l - }//end kk - - - //**************************** UL Part ******************************************************** - for (kk=0; kk<2; kk++) { - for (i=0; i<input_buffer_length_UE[kk]; i++) - input_buffer_UE[kk][i] = taus()&0xff; - - //input_buffer_UE[kk][i]=(char)(dl_ch_estimates[kk][i]); - - if (input_fd==NULL) { -#ifdef OFDMA_ULSCH - - if (srs_flag) - generate_srs_tx(PHY_vars_UE[kk],0,AMP,subframe_UL); - - generate_drs_pusch(PHY_vars_UE[kk],0,AMP,subframe_UL,first_rb,nb_rb_UE); - -#else - - if (srs_flag) - generate_srs_tx(PHY_vars_UE[kk],0,scfdma_amps[nb_rb_UE],subframe_UL); - - generate_drs_pusch(PHY_vars_UE[kk],0, - scfdma_amps[nb_rb_UE], - subframe_UL, - PHY_vars_UE[kk]->ulsch_ue[0]->harq_processes[0]->first_rb, - PHY_vars_UE[kk]->ulsch_ue[0]->harq_processes[0]->nb_rb); -#endif - - //printf("harq_pid = %d\n\n",harq_pid); - if (ulsch_encoding(input_buffer_UE[kk], //prob - &PHY_vars_UE[kk]->lte_frame_parms, - PHY_vars_UE[kk]->ulsch_ue[0], - harq_pid[kk], - transmission_mode, // transmission mode - control_only_flag, - 1// Nbundled - )==-1) { - printf("ulsim.c Problem with ulsch_encoding\n"); - exit(-1); - } - -#ifdef OFDMA_ULSCH - ulsch_modulation(PHY_vars_UE[kk]->lte_ue_common_vars.txdataF,AMP,subframe_UL,&PHY_vars_UE[kk]->lte_frame_parms,PHY_vars_UE[kk]->ulsch_ue[0],cooperation_flag); -#else - // printf("Generating PUSCH in subframe %d with amp %d, nb_rb %d\n",subframe,scfdma_amps[nb_rb_UE],nb_rb_UE); - ulsch_modulation(PHY_vars_UE[kk]->lte_ue_common_vars.txdataF,scfdma_amps[nb_rb_UE], - subframe_UL,&PHY_vars_UE[kk]->lte_frame_parms, - PHY_vars_UE[kk]->ulsch_ue[0],cooperation_flag); -#endif - -#ifdef IFFT_FPGA - - for (aa=0; aa<PHY_vars_UE[kk]->lte_frame_parms.nb_antennas_rx; aa++) { - for (kk=0; kk<2; kk++) {// UE 0 and UE 1 - if (frame_parms->Ncp == 1) - PHY_ofdm_mod(txdataF2_UE[kk][aa], // input - txdata_UE[kk][aa], // output - PHY_vars_UE[kk]->lte_frame_parms.log2_symbol_size, // log2_fft_size - nsymb, // number of symbols - PHY_vars_UE[kk]->lte_frame_parms.nb_prefix_samples, // number of prefix samples - PHY_vars_UE[kk]->lte_frame_parms.twiddle_ifft, // IFFT twiddle factors - PHY_vars_UE[kk]->lte_frame_parms.rev, // bit-reversal permutation - CYCLIC_PREFIX); - else - normal_prefix_mod(txdataF2_UE[kk][aa],txdata_UE[kk][aa],nsymb,frame_parms); - } - } - -#else //IFFT_FPGA - tx_lev_UE[kk]=0; - - for (aa=0; aa<PHY_vars_UE[kk]->lte_frame_parms.nb_antennas_rx; aa++) { - if (frame_parms->Ncp == 1) - PHY_ofdm_mod(&PHY_vars_UE[kk]->lte_ue_common_vars.txdataF[aa][subframe_UL*nsymb*OFDM_SYMBOL_SIZE_COMPLEX_SAMPLES_NO_PREFIX], // input - &txdata_UE[kk][aa][PHY_vars_eNB[kk]->lte_frame_parms.samples_per_tti*subframe_UL], // output - PHY_vars_UE[kk]->lte_frame_parms.log2_symbol_size, // log2_fft_size - nsymb, // number of symbols - PHY_vars_UE[kk]->lte_frame_parms.nb_prefix_samples, // number of prefix samples - PHY_vars_UE[kk]->lte_frame_parms.twiddle_ifft, // IFFT twiddle factors - PHY_vars_UE[kk]->lte_frame_parms.rev, // bit-reversal permutation - CYCLIC_PREFIX); - else - normal_prefix_mod(&PHY_vars_UE[kk]->lte_ue_common_vars.txdataF[aa][subframe_UL*nsymb*OFDM_SYMBOL_SIZE_COMPLEX_SAMPLES_NO_PREFIX], - &txdata_UE[kk][aa][PHY_vars_eNB[kk]->lte_frame_parms.samples_per_tti*subframe_UL], - nsymb, - frame_parms); - -#ifndef OFDMA_ULSCH - apply_7_5_kHz(PHY_vars_UE[kk],subframe_UL<<1); - apply_7_5_kHz(PHY_vars_UE[kk],1+(subframe_UL<<1)); -#endif - - tx_lev_UE[kk] += signal_energy(&txdata_UE[kk][aa][PHY_vars_eNB[kk]->lte_frame_parms.samples_per_tti*subframe_UL], - OFDM_SYMBOL_SIZE_COMPLEX_SAMPLES); - - } - -#endif //IFFT_FPGA - } //input_fd - - // multipath channel - tx_lev_UE_dB[kk] = (unsigned int) dB_fixed(tx_lev_UE[kk]); - - for (i=0; i<PHY_vars_eNB[kk]->lte_frame_parms.samples_per_tti; i++) { - if (awgn_flag == 0) { - for (aarx=0; aarx<PHY_vars_UE[kk]->lte_frame_parms.nb_antennas_tx; aarx++) { - s_re_UE[kk][aarx][i] = ((double)(((short *)&txdata_UE[kk][aarx][PHY_vars_eNB[kk]->lte_frame_parms.samples_per_tti*subframe_UL]))[(i<<1)]); - s_im_UE[kk][aarx][i] = ((double)(((short *)&txdata_UE[kk][aarx][PHY_vars_eNB[kk]->lte_frame_parms.samples_per_tti*subframe_UL]))[(i<<1)+1]); - } - } else { - for (aa=0; aa<PHY_vars_eNB[kk]->lte_frame_parms.nb_antennas_rx; aa++) { - for (ll=0; ll<2; ll++) { - if (kk == ll) { - r_re_UE[kk][ll][aa][i] = ((double)(((short *)&txdata_UE[kk][aa][PHY_vars_eNB[kk]->lte_frame_parms.samples_per_tti*subframe_UL]))[(i<<1)]); - r_im_UE[kk][ll][aa][i] = ((double)(((short *)&txdata_UE[kk][aa][PHY_vars_eNB[kk]->lte_frame_parms.samples_per_tti*subframe_UL]))[(i<<1)+1]); - } else { - r_re_UE[kk][ll][aa][i] = 0; - r_im_UE[kk][ll][aa][i] = 0; - } - } - } - } - - for (aa=0; aa<PHY_vars_eNB[kk]->lte_frame_parms.nb_antennas_rx; aa++) { - r_re_2UE[kk][aa][i] = 0; - r_im_2UE[kk][aa][i] = 0; - } - } - - // filtre RF tx -> s_re_UE - if ((decalibration == 1) && (kk == 1)) { - for (aa=0; aa<PHY_vars_UE[kk]->lte_frame_parms.nb_antennas_tx; aa++) { - real_fir(s_re_UE[kk][aa], s_im_UE[kk][aa], s_re_out, s_im_out, s_coeffs_UE, s_ord_fir_UE, PHY_vars_eNB[kk]->lte_frame_parms.samples_per_tti); - - for (i=0; i<PHY_vars_eNB[kk]->lte_frame_parms.samples_per_tti; i++) { - s_re_UE[kk][aa][i] = s_re_out[i]; - s_im_UE[kk][aa][i] = s_im_out[i]; - } - } - } - - if ((phase_offset == 1) && (kk == 1)) { - for (aa=0; aa<PHY_vars_UE[kk]->lte_frame_parms.nb_antennas_rx; aa++) { - phase_in_DL = phase_in_UL; - phase_offsets(s_re_UE[kk][aa], s_im_UE[kk][aa], s_re_out, s_im_out, PHY_vars_eNB[kk]->lte_frame_parms.samples_per_tti, &phase_in_UL, phase_inc, -1); - - for (i=0; i<PHY_vars_eNB[kk]->lte_frame_parms.samples_per_tti; i++) { - s_re_UE[kk][aa][i] = s_re_out[i]; - s_im_UE[kk][aa][i] = s_im_out[i]; - } - } - } - - for (ll=0; ll<2; ll++) { - - if (awgn_flag == 0) { - - if (trials<n_K-1) - multipath_channel(UE2eNB[ll][kk],s_re_UE[ll],s_im_UE[ll],r_re_UE[ll][kk],r_im_UE[ll][kk], - PHY_vars_eNB[kk]->lte_frame_parms.samples_per_tti,1); - else - multipath_channel(UE2eNB[ll][kk],s_re_UE[ll],s_im_UE[ll],r_re_UE[ll][kk],r_im_UE[ll][kk], - PHY_vars_eNB[kk]->lte_frame_parms.samples_per_tti,1); - } - - - // filtre RF rx -> r_re - if ((decalibration == 1) && (kk == 1) && (ll == 1)) { - for (aa=0; aa<PHY_vars_eNB[kk]->lte_frame_parms.nb_antennas_rx; aa++) { - real_fir(r_re_UE[ll][kk][aa], r_im_UE[ll][kk][aa], r_re_out, r_im_out, r_coeffs_UE, r_ord_fir_UE, PHY_vars_eNB[kk]->lte_frame_parms.samples_per_tti); - - for (i=0; i<PHY_vars_eNB[kk]->lte_frame_parms.samples_per_tti; i++) { - r_re_UE[ll][kk][aa][i] = r_re_out[i]; - r_im_UE[ll][kk][aa][i] = r_im_out[i]; - } - } - } - }// end ll - }//end kk - - //************************************************************************************** - - - for (kk=0; kk<2; kk++) { - for (ll=0; ll<2; ll++) { - for (i=0; i<PHY_vars_eNB[kk]->lte_frame_parms.samples_per_tti; i++) { - for (aa=0; aa<PHY_vars_eNB[kk]->lte_frame_parms.nb_antennas_rx; aa++) { - r_re_2UE[kk][aa][i] += r_re_UE[ll][kk][aa][i]; - r_im_2UE[kk][aa][i] += r_im_UE[ll][kk][aa][i]; - } - } - } - - sigma2_UE_dB[kk] = tx_lev_UE_dB[kk] +10*log10(PHY_vars_UE[kk]->lte_frame_parms.ofdm_symbol_size/(PHY_vars_UE[kk]->lte_frame_parms.N_RB_DL*12)) - SNR; - //AWGN - sigma2_UE[kk] = pow(10,sigma2_UE_dB[kk]/10); - - for (i=0; i<PHY_vars_eNB[kk]->lte_frame_parms.samples_per_tti; i++) { - for (aa=0; aa<PHY_vars_eNB[kk]->lte_frame_parms.nb_antennas_rx; aa++) { - ((short*) &PHY_vars_eNB[kk]->lte_eNB_common_vars.rxdata[0][aa][PHY_vars_eNB[kk]->lte_frame_parms.samples_per_tti*subframe_UL])[2*i] = (short) (r_re_2UE[kk][aa][i] + sqrt(sigma2_UE[kk]/2)*gaussdouble( - 0.0,1.0)); - ((short*) &PHY_vars_eNB[kk]->lte_eNB_common_vars.rxdata[0][aa][PHY_vars_eNB[kk]->lte_frame_parms.samples_per_tti*subframe_UL])[2*i+1] = (short) (r_im_2UE[kk][aa][i] + - (iqim*r_re_2UE[kk][aa][i]) + sqrt(sigma2_UE[kk]/2)*gaussdouble(0.0,1.0)); - } - } - - i_mod = get_Qm(mcs_eNB); - - // Inner receiver scheduling for 3 slots - for (Ns=(2*subframe_DL); Ns<((2*subframe_DL)+3); Ns++) { - for (l=0; l<pilot2; l++) { - if ((Ns==(2+(2*subframe_DL))) && (l==0)) { - lte_ue_measurements(PHY_vars_UE[kk], - subframe_DL*PHY_vars_UE[kk]->lte_frame_parms.samples_per_tti, - 1, - 0); - - if (transmission_mode==5 || transmission_mode==6) { - if (pmi_feedback==1) { - pmi_feedback= 0; - // printf("measured PMI %x\n",pmi2hex_2Ar1(quantize_subband_pmi(&PHY_vars_UE->PHY_measurements,0))); - goto PMI_FEEDBACK; - } - } - - } - - - if ((Ns==(2*subframe_DL)) && (l==pilot1)) {// process symbols 0,1,2 - - if (dci_flag == 1) { - rx_pdcch(&PHY_vars_UE[kk]->lte_ue_common_vars, - PHY_vars_UE[kk]->lte_ue_pdcch_vars, - &PHY_vars_UE[kk]->lte_frame_parms, - subframe_DL, - 0, - (PHY_vars_UE[kk]->lte_frame_parms.mode1_flag == 1) ? SISO : ALAMOUTI, - 0); - - // overwrite number of pdcch symbols - PHY_vars_UE[kk]->lte_ue_pdcch_vars[0]->num_pdcch_symbols = num_pdcch_symbols; - - dci_cnt = dci_decoding_procedure(PHY_vars_UE[kk], - dci_alloc_rx, - eNB_id, - subframe_DL, - SI_RNTI, - RA_RNTI); - //printf("dci_cnt %d\n",dci_cnt); - - if (dci_cnt==0) { - dlsch_active = 0; - - if (round_eNB[kk]==0) { - dci_errors[kk]++; - round_eNB[kk]=5; - errs_eNB[kk][0]++; - round_trials_eNB[kk][0]++; - } - } - - for (i=0; i<dci_cnt; i++) { - //printf("Generating dlsch parameters for RNTI %x\n",dci_alloc_rx[i].rnti); - if ((dci_alloc_rx[i].rnti == n_rnti) && - (generate_ue_dlsch_params_from_dci(0, - dci_alloc_rx[i].dci_pdu, - dci_alloc_rx[i].rnti, - dci_alloc_rx[i].format, - PHY_vars_UE[kk]->dlsch_ue[0], - &PHY_vars_UE[kk]->lte_frame_parms, - SI_RNTI, - RA_RNTI, - P_RNTI)==0)) { - //dump_dci(&PHY_vars_UE->lte_frame_parms,&dci_alloc_rx[i]); - coded_bits_per_codeword = get_G(&PHY_vars_eNB[kk]->lte_frame_parms, - PHY_vars_UE[kk]->dlsch_ue[0][0]->nb_rb, - PHY_vars_UE[kk]->dlsch_ue[0][0]->rb_alloc, - get_Qm(PHY_vars_UE[kk]->dlsch_ue[0][0]->harq_processes[PHY_vars_UE[kk]->dlsch_ue[0][0]->current_harq_pid]->mcs), - PHY_vars_UE[kk]->lte_ue_pdcch_vars[0]->num_pdcch_symbols, - subframe_DL); - dlsch_active = 1; - } else { - dlsch_active = 0; - - if (round_eNB[kk]==0) { - dci_errors[kk]++; - errs_eNB[kk][0]++; - round_trials_eNB[kk][0]++; - - if (n_frames==1) { - printf("DCI misdetection trial %d\n",trials); - round_eNB[kk]=5; - } - } - } - } - } // if dci_flag==1 - else { //dci_flag == 0 - - PHY_vars_UE[kk]->lte_ue_pdcch_vars[0]->crnti = n_rnti; - PHY_vars_UE[kk]->lte_ue_pdcch_vars[0]->num_pdcch_symbols = num_pdcch_symbols; - - generate_ue_dlsch_params_from_dci(0, - &DLSCH_alloc_pdu2_2D[0], - C_RNTI, - format2_2D_M10PRB, - PHY_vars_UE[kk]->dlsch_ue[0], - &PHY_vars_UE[kk]->lte_frame_parms, - SI_RNTI, - RA_RNTI, - P_RNTI); - dlsch_active = 1; - } // if dci_flag == 1 - } - - if (dlsch_active == 1) { - if ((Ns==(1+(2*subframe_DL))) && (l==0)) {// process symbols 3,4,5 - - for (m=PHY_vars_UE[kk]->lte_ue_pdcch_vars[0]->num_pdcch_symbols; - m<pilot2; - m++) { - if (rx_dlsch(&PHY_vars_UE[kk]->lte_ue_common_vars, - PHY_vars_UE[kk]->lte_ue_dlsch_vars, - &PHY_vars_UE[kk]->lte_frame_parms, - eNB_id, - eNB_id_i, - PHY_vars_UE[kk]->dlsch_ue[0], - subframe_DL, - m, - (m==PHY_vars_UE[kk]->lte_ue_pdcch_vars[0]->num_pdcch_symbols)?1:0, - dual_stream_UE, - &PHY_vars_UE[kk]->PHY_measurements, - i_mod)==-1) { - - dlsch_active = 0; - break; - } - } - - } - - if ((Ns==(1+(2*subframe_DL))) && (l==pilot1)) {// process symbols 6,7,8 - - for (m=pilot2; - m<pilot3; - m++) - if (rx_dlsch(&PHY_vars_UE[kk]->lte_ue_common_vars, - PHY_vars_UE[kk]->lte_ue_dlsch_vars, - &PHY_vars_UE[kk]->lte_frame_parms, - eNB_id, - eNB_id_i, - PHY_vars_UE[kk]->dlsch_ue[0], - subframe_DL, - m, - 0, - dual_stream_UE, - &PHY_vars_UE[kk]->PHY_measurements, - i_mod)==-1) { - dlsch_active=0; - break; - } - } - - if ((Ns==(2+(2*subframe_DL))) && (l==0)) // process symbols 10,11, do deinterleaving for TTI - for (m=pilot3; - m<PHY_vars_UE[kk]->lte_frame_parms.symbols_per_tti; - m++) - if (rx_dlsch(&PHY_vars_UE[kk]->lte_ue_common_vars, - PHY_vars_UE[kk]->lte_ue_dlsch_vars, - &PHY_vars_UE[kk]->lte_frame_parms, - eNB_id, - eNB_id_i, - PHY_vars_UE[kk]->dlsch_ue[0], - subframe_DL, - m, - 0, - dual_stream_UE, - &PHY_vars_UE[kk]->PHY_measurements, - i_mod)==-1) { - dlsch_active=0; - break; - } - - if ((SNR==snr0) && (llb==0)) { - llb=1; - - - dump_dlsch2(PHY_vars_UE[kk],eNB_id,coded_bits_per_codeword); - dump_dlsch2(PHY_vars_UE[kk],eNB_id_i,coded_bits_per_codeword); - write_output("dlsch_e.m","e",PHY_vars_eNB[kk]->dlsch_eNB[0][0]->e,coded_bits_per_codeword,1,4); - } - - } - } - } - - // calculate uncoded BLER - uncoded_ber[kk]=0; - - for (i=0; i<coded_bits_per_codeword; i++) - if (PHY_vars_eNB[kk]->dlsch_eNB[0][0]->e[i] != (PHY_vars_UE[kk]->lte_ue_dlsch_vars[0]->llr[0][i]<0)) { - uncoded_ber_bit[i] = 1; - uncoded_ber[kk]++; - } else - uncoded_ber_bit[i] = 0; - - uncoded_ber[kk]/=coded_bits_per_codeword; - avg_ber[kk] += uncoded_ber[kk]; - - //imran - if(abstx) { - if (trials<10 && round_eNB[kk]==0 && transmission_mode==5) { - for (iii=0; iii<NB_RB; iii++) { - //fprintf(csv_fd, "%d, %d", (PHY_vars_UE->lte_ue_dlsch_vars[eNB_id]->pmi_ext[iii]),(PHY_vars_UE->lte_ue_dlsch_vars[eNB_id_i]->pmi_ext[iii])); - msg(" %x",(PHY_vars_UE[kk]->lte_ue_dlsch_vars[eNB_id]->pmi_ext[iii])); - // msg("Opposite Extracted pmi %x\n",(PHY_vars_UE->lte_ue_dlsch_vars[eNB_id_i]->pmi_ext[iii])); - - } - } - } - - - PHY_vars_UE[kk]->dlsch_ue[0][0]->rnti = n_rnti; - dlsch_unscrambling(&PHY_vars_UE[kk]->lte_frame_parms, - PHY_vars_UE[kk]->lte_ue_pdcch_vars[0]->num_pdcch_symbols, - PHY_vars_UE[kk]->dlsch_ue[0][0], - coded_bits_per_codeword, - PHY_vars_UE[kk]->lte_ue_dlsch_vars[eNB_id]->llr[0], - 0, - subframe_DL<<1); - - - ret_eNB[kk] = dlsch_decoding(PHY_vars_UE[kk]->lte_ue_dlsch_vars[eNB_id]->llr[0], - &PHY_vars_UE[kk]->lte_frame_parms, - PHY_vars_UE[kk]->dlsch_ue[0][0], - subframe_DL, - PHY_vars_UE[kk]->lte_ue_pdcch_vars[0]->num_pdcch_symbols); - -#ifdef XFORMS - do_forms(form, - &PHY_vars_UE[kk]->lte_frame_parms, - PHY_vars_UE[kk]->lte_ue_common_vars.dl_ch_estimates_time, - PHY_vars_UE[kk]->lte_ue_common_vars.dl_ch_estimates[eNB_id], - PHY_vars_UE[kk]->lte_ue_common_vars.rxdata, - PHY_vars_UE[kk]->lte_ue_common_vars.rxdataF, - PHY_vars_UE[kk]->lte_ue_dlsch_vars[0]->rxdataF_comp[0], - PHY_vars_UE[kk]->lte_ue_dlsch_vars[3]->rxdataF_comp[0], - PHY_vars_UE[kk]->lte_ue_dlsch_vars[0]->dl_ch_rho_ext[0], - PHY_vars_UE[kk]->lte_ue_dlsch_vars[0]->llr[0],coded_bits_per_codeword); -#endif - - if (ret_eNB[kk] <= MAX_TURBO_ITERATIONS) { - if (fix_rounds==0) - round_eNB[kk]=5; - else - round_eNB[kk]++; - } else { - errs_eNB[kk][round_eNB[kk]]++; - round_eNB[kk]++; - } - - //********************** DL part end - - //********************** DL Channel Feedback - - //****************************** UL Decoding Proc - - //modif start UL - SNRmeas[kk] = 10*log10(((double)signal_energy((int*)&PHY_vars_eNB[kk]->lte_eNB_common_vars.rxdata[0][0][160+(PHY_vars_eNB[kk]->lte_frame_parms.samples_per_tti*subframe_UL)], - OFDM_SYMBOL_SIZE_COMPLEX_SAMPLES/2))/((double)signal_energy((int*)&PHY_vars_eNB[kk]->lte_eNB_common_vars.rxdata[0][0][160+(PHY_vars_eNB[kk]->lte_frame_parms.samples_per_tti*(1+subframe_UL))], - OFDM_SYMBOL_SIZE_COMPLEX_SAMPLES/2)) - 1); - -#ifndef OFDMA_ULSCH - remove_7_5_kHz(PHY_vars_eNB[kk],subframe_UL<<1); - remove_7_5_kHz(PHY_vars_eNB[kk],1+(subframe_UL<<1)); -#endif - - for (l=subframe_UL*PHY_vars_UE[kk]->lte_frame_parms.symbols_per_tti; l<((1+subframe_UL)*PHY_vars_UE[kk]->lte_frame_parms.symbols_per_tti); l++) { - - slot_fep_ul(&PHY_vars_eNB[kk]->lte_frame_parms, - &PHY_vars_eNB[kk]->lte_eNB_common_vars, - l%(PHY_vars_eNB[kk]->lte_frame_parms.symbols_per_tti/2), - l/(PHY_vars_eNB[kk]->lte_frame_parms.symbols_per_tti/2), - 0, - 0); - } - - - - PHY_vars_eNB[kk]->ulsch_eNB[0]->cyclicShift = cyclic_shift;// cyclic shift for DMRS - rx_ulsch(PHY_vars_eNB[kk], - subframe_UL, - 0, // this is the effective sector id - 0, // this is the UE_id - PHY_vars_eNB[kk]->ulsch_eNB, - cooperation_flag); - - ret_UE[kk]= ulsch_decoding(PHY_vars_eNB[kk], - 0, // UE_id - subframe_UL, - control_only_flag, - 1 // Nbundled - ); - - if (ret_UE[kk] <= MAX_TURBO_ITERATIONS) - round_UE[kk]=5; - else { - errs_UE[kk][round_UE[kk]]++; - round_UE[kk]++; - } // ulsch error - - if (trials<=n_K) { - do_quantization_eNB(PHY_vars_eNB[kk], - PHY_vars_UE[kk], - nsymb, - pilot1-1, //pilot ant 0 - pilot1, //pilot ant 1 - quant_v, - drs_ch_estimates[kk], - UE_id); - } - }//end kk - - // Calibration - if (trials <= n_K) { - - for (aa=0; aa<PHY_vars_eNB[1]->lte_frame_parms.nb_antennas_rx; aa++) - for (k=0; k<2*300; k++) { - K_dl_ch_estimates[trials][aa][k] = dl_ch_estimates[1][k+aa*2*300]; - K_drs_ch_estimates[trials][aa][k] = drs_ch_estimates[1][k+aa*2*300]; - } - - } else if ( (trials>n_K) && (P_eNb_active==0)) { - - do_calibration (K_dl_ch_estimates, - K_drs_ch_estimates, - PeNb_factor, - PHY_vars_eNB[1]->lte_frame_parms.ofdm_symbol_size, - n_K); - - P_eNb_active=1; - - - //write_output("cal1.m","cal", PeNb_factor[1],600,1,8); - - //write_output("aue1.m","aue", drs_ch_estimates[0],1200,1,1); - //write_output("aenb1.m","aenb", dl_ch_estimates[0],1200,1,1); - //write_output("vulb0.m","vul0", PHY_vars_eNB[1]->lte_eNB_ulsch_vars[0]->drs_ch_estimates[UE_id][0],5000,1,1); - //write_output("vulb.m","vul", PHY_vars_eNB[1]->lte_eNB_ulsch_vars[0]->drs_ch_estimates[UE_id][1],5000,1,1); - //write_output("vdlb.m","vdl", PHY_vars_UE[1]->lte_ue_common_vars.dl_ch_estimates[eNB_id][0], 5000,1,1); - - //exit(-1); - - } - - //modif end UL - - } //round - - //if ((errs_eNB[0]>=100) && (trials>(n_frames/2)) && (errs_UE[0]>=100) ) - // break; //b - - } //trials - - for (kk=0; kk<2; kk++) { - printf("\n*******DL %d *************SNR = %f dB (tx_lev_eNB %f, sigma2_eNB_dB %f)************DL************\n", - kk, - SNR, - (double)tx_lev_eNB_dB[kk]+10*log10(PHY_vars_UE[kk]->lte_frame_parms.ofdm_symbol_size/(NB_RB*12)), - sigma2_eNB_dB[kk]); - - printf("Errors (%d/%d %d/%d %d/%d %d/%d), Pe = (%e,%e,%e,%e), dci_errors %d/%d, Pe = %e => effective rate %f (%f), normalized delay %f (%f), uncoded_ber %f\n", - errs_eNB[kk][0], - round_trials_eNB[kk][0], - errs_eNB[kk][1], - round_trials_eNB[kk][1], - errs_eNB[kk][2], - round_trials_eNB[kk][2], - errs_eNB[kk][3], - round_trials_eNB[kk][3], - (double)errs_eNB[kk][0]/(round_trials_eNB[kk][0]), - (double)errs_eNB[kk][1]/(round_trials_eNB[kk][1]), - (double)errs_eNB[kk][2]/(round_trials_eNB[kk][2]), - (double)errs_eNB[kk][3]/(round_trials_eNB[kk][3]), - dci_errors[kk], - round_trials_eNB[kk][0], - (double)dci_errors[kk]/(round_trials_eNB[kk][0]), - rate_eNB*((double)(round_trials_eNB[kk][0]-dci_errors[kk])/((double)round_trials_eNB[kk][0] + round_trials_eNB[kk][1] + round_trials_eNB[kk][2] + round_trials_eNB[kk][3])), - rate_eNB, - (1.0*(round_trials_eNB[kk][0]-errs_eNB[kk][0])+2.0*(round_trials_eNB[kk][1]-errs_eNB[kk][1])+3.0*(round_trials_eNB[kk][2]-errs_eNB[kk][2])+4.0*(round_trials_eNB[kk][3]-errs_eNB[kk][3]))/(( - double)round_trials_eNB[kk][0])/(double)PHY_vars_eNB[kk]->dlsch_eNB[0][0]->harq_processes[0]->TBS, - (1.0*(round_trials_eNB[kk][0]-errs_eNB[kk][0])+2.0*(round_trials_eNB[kk][1]-errs_eNB[kk][1])+3.0*(round_trials_eNB[kk][2]-errs_eNB[kk][2])+4.0*(round_trials_eNB[kk][3]-errs_eNB[kk][3]))/(( - double)round_trials_eNB[kk][0]), - avg_ber[kk]/round_trials_eNB[kk][0]); - - fprintf(bler_fd,"%f;%d;%d;%f;%d;%d;%d;%d;%d;%d;%d;%d;%d;%f\n", - SNR, - mcs_eNB, - PHY_vars_eNB[kk]->dlsch_eNB[0][0]->harq_processes[0]->TBS, - rate_eNB, - errs_eNB[kk][0], - round_trials_eNB[kk][0], - errs_eNB[kk][1], - round_trials_eNB[kk][1], - errs_eNB[kk][2], - round_trials_eNB[kk][2], - errs_eNB[kk][3], - round_trials_eNB[kk][3], - dci_errors[kk], - avg_ber[kk]/round_trials_eNB[kk][0]); - - fprintf(tikz_fd,"(%f,%f)", SNR, (float)errs_eNB[kk][0]/round_trials_eNB[kk][0]); - - if(abstx) { //ABSTRACTION - blerr= (double)errs_eNB[kk][0]/(round_trials_eNB[kk][0]); - fprintf(csv_fd,"%e;\n",blerr); - } //ABStraction - - printf("\n++++++UL %d +++++++++++++SNR = %f dB (tx_UE_lev %f, sigma2_UE_dB %f)++++++++++++UL+++++++++++\n", - kk, - SNR, - (double)tx_lev_UE_dB[kk]+10*log10(PHY_vars_UE[kk]->lte_frame_parms.ofdm_symbol_size/(nb_rb_UE*12)), - sigma2_UE_dB[kk]); - - printf("Errors (%d/%d %d/%d %d/%d %d/%d), Pe = (%e,%e,%e,%e) => effective rate_UL %f (%f), normalized delay %f (%f)\n", - errs_UE[kk][0], - round_trials_UE[kk][0], - errs_UE[kk][1], - round_trials_UE[kk][1], - errs_UE[kk][2], - round_trials_UE[kk][2], - errs_UE[kk][3], - round_trials_UE[kk][3], - (double)errs_UE[kk][0]/(round_trials_UE[kk][0]), - (double)errs_UE[kk][1]/(round_trials_UE[kk][1]), - (double)errs_UE[kk][2]/(round_trials_UE[kk][2]), - (double)errs_UE[kk][3]/(round_trials_UE[kk][3]), - rate_UE*((double)(round_trials_UE[kk][0])/((double)round_trials_UE[kk][0] + round_trials_UE[kk][1] + round_trials_UE[kk][2] + round_trials_UE[kk][3])), - rate_UE, - (1.0*(round_trials_UE[kk][0]-errs_UE[kk][0])+2.0*(round_trials_UE[kk][1]-errs_UE[kk][1])+3.0*(round_trials_UE[kk][2]-errs_UE[kk][2])+4.0*(round_trials_UE[kk][3]-errs_UE[kk][3]))/(( - double)round_trials_UE[kk][0])/(double)PHY_vars_eNB[kk]->dlsch_eNB[0][0]->harq_processes[0]->TBS, - (1.0*(round_trials_UE[kk][0]-errs_UE[kk][0])+2.0*(round_trials_UE[kk][1]-errs_UE[kk][1])+3.0*(round_trials_UE[kk][2]-errs_UE[kk][2])+4.0*(round_trials_UE[kk][3]-errs_UE[kk][3]))/(( - double)round_trials_UE[kk][0])); - - fprintf(bler_fd,"%f;%d;%d;%f;%d;%d;%d;%d;%d;%d;%d;%d\n", - SNR, - mcs_UE, - PHY_vars_eNB[kk]->dlsch_eNB[0][0]->harq_processes[0]->TBS, - rate_UE, - errs_UE[kk][0], - round_trials_UE[kk][0], - errs_UE[kk][1], - round_trials_UE[kk][1], - errs_UE[kk][2], - round_trials_UE[kk][2], - errs_UE[kk][3], - round_trials_UE[kk][3]); - }//end kk - - }// SNR - - } //ch_realization - - - fclose(bler_fd); - fprintf(tikz_fd,"};\n"); - fclose(tikz_fd); - - if (input_trch_file==1) - fclose(input_trch_fd); - - if (input_file==1) - fclose(input_fd); - - if(abstx) { // ABSTRACTION - fprintf(csv_fd,"];"); - fclose(csv_fd); - } - - printf("Freeing dlsch structures\n"); - - for (i=0; i<2; i++) { - printf("eNB 0 %d\n",i); - free_eNB_dlsch(PHY_vars_eNB[0]->dlsch_eNB[0][i]); - printf("eNB 1 %d\n",i); - free_eNB_dlsch(PHY_vars_eNB[1]->dlsch_eNB[0][i]); - printf("UE 0 %d\n",i); - free_ue_dlsch(PHY_vars_UE[0]->dlsch_ue[0][i]); - printf("UE 1 %d\n",i); - free_ue_dlsch(PHY_vars_UE[1]->dlsch_ue[0][i]); - } - - -#ifdef IFFT_FPGA - printf("Freeing transmit signals\n"); - - for (kk=0; kk<2; kk++) { - free(txdataF2_eNB[kk][0]); - free(txdataF2_eNB[kk][1]); - free(txdataF2_eNB[kk]); - free(txdata_eNB[kk][0]); - free(txdata_eNB[kk][1]); - free(txdata_eNB[kk]); - - free(txdataF2_UE[kk][0]); - free(txdataF2_UE[kk][1]); - free(txdataF2_UE[kk]); - free(txdata_UE[kk][0]); - free(txdata_UE[kk][1]); - free(txdata_UE[kk]); - } - - //modif end UL -#endif - - printf("Freeing channel I/O\n"); - - for (i=0; i<2; i++) { - for (kk=0; kk<2; kk++) { - free(s_re_eNB[kk][i]); - free(s_im_eNB[kk][i]); - free(s_re_UE[kk][i]); - free(s_im_UE[kk][i]); - free(r_re_2eNB[kk][i]); - free(r_im_2eNB[kk][i]); - free(r_re_2UE[kk][i]); - free(r_im_2UE[kk][i]); - - for (ll=0; ll<2; ll++) { - free(r_re_eNB[kk][ll][i]); - free(r_im_eNB[kk][ll][i]); - free(r_re_UE[ll][kk][i]); - free(r_im_UE[ll][kk][i]); - } - } - } - - for (kk=0; kk<2; kk++) { - for (ll=0; ll<2; ll++) { - free(r_re_eNB[kk][ll]); - free(r_im_eNB[kk][ll]); - free(r_re_UE[ll][kk]); - free(r_im_UE[ll][kk]); - } - - free(s_re_eNB[kk]); - free(s_im_eNB[kk]); - free(s_re_UE[kk]); - free(s_im_UE[kk]); - free(r_re_2eNB[kk]); - free(r_im_2eNB[kk]); - free(r_re_2UE[kk]); - free(r_im_2UE[kk]); - - } - - //modif end UL - // lte_sync_time_free(); - - return(0); -} -