diff --git a/openair1/SIMULATION/LTE_RECIPROCITY/COPYING b/openair1/SIMULATION/LTE_RECIPROCITY/COPYING
deleted file mode 100644
index 818433ecc0e094a4db1023c68b33f24344643ad8..0000000000000000000000000000000000000000
--- a/openair1/SIMULATION/LTE_RECIPROCITY/COPYING
+++ /dev/null
@@ -1,674 +0,0 @@
-                    GNU GENERAL PUBLIC LICENSE
-                       Version 3, 29 June 2007
-
- Copyright (C) 2007 Free Software Foundation, Inc. <http://fsf.org/>
- Everyone is permitted to copy and distribute verbatim copies
- of this license document, but changing it is not allowed.
-
-                            Preamble
-
-  The GNU General Public License is a free, copyleft license for
-software and other kinds of works.
-
-  The licenses for most software and other practical works are designed
-to take away your freedom to share and change the works.  By contrast,
-the GNU General Public License is intended to guarantee your freedom to
-share and change all versions of a program--to make sure it remains free
-software for all its users.  We, the Free Software Foundation, use the
-GNU General Public License for most of our software; it applies also to
-any other work released this way by its authors.  You can apply it to
-your programs, too.
-
-  When we speak of free software, we are referring to freedom, not
-price.  Our General Public Licenses are designed to make sure that you
-have the freedom to distribute copies of free software (and charge for
-them if you wish), that you receive source code or can get it if you
-want it, that you can change the software or use pieces of it in new
-free programs, and that you know you can do these things.
-
-  To protect your rights, we need to prevent others from denying you
-these rights or asking you to surrender the rights.  Therefore, you have
-certain responsibilities if you distribute copies of the software, or if
-you modify it: responsibilities to respect the freedom of others.
-
-  For example, if you distribute copies of such a program, whether
-gratis or for a fee, you must pass on to the recipients the same
-freedoms that you received.  You must make sure that they, too, receive
-or can get the source code.  And you must show them these terms so they
-know their rights.
-
-  Developers that use the GNU GPL protect your rights with two steps:
-(1) assert copyright on the software, and (2) offer you this License
-giving you legal permission to copy, distribute and/or modify it.
-
-  For the developers' and authors' protection, the GPL clearly explains
-that there is no warranty for this free software.  For both users' and
-authors' sake, the GPL requires that modified versions be marked as
-changed, so that their problems will not be attributed erroneously to
-authors of previous versions.
-
-  Some devices are designed to deny users access to install or run
-modified versions of the software inside them, although the manufacturer
-can do so.  This is fundamentally incompatible with the aim of
-protecting users' freedom to change the software.  The systematic
-pattern of such abuse occurs in the area of products for individuals to
-use, which is precisely where it is most unacceptable.  Therefore, we
-have designed this version of the GPL to prohibit the practice for those
-products.  If such problems arise substantially in other domains, we
-stand ready to extend this provision to those domains in future versions
-of the GPL, as needed to protect the freedom of users.
-
-  Finally, every program is threatened constantly by software patents.
-States should not allow patents to restrict development and use of
-software on general-purpose computers, but in those that do, we wish to
-avoid the special danger that patents applied to a free program could
-make it effectively proprietary.  To prevent this, the GPL assures that
-patents cannot be used to render the program non-free.
-
-  The precise terms and conditions for copying, distribution and
-modification follow.
-
-                       TERMS AND CONDITIONS
-
-  0. Definitions.
-
-  "This License" refers to version 3 of the GNU General Public License.
-
-  "Copyright" also means copyright-like laws that apply to other kinds of
-works, such as semiconductor masks.
-
-  "The Program" refers to any copyrightable work licensed under this
-License.  Each licensee is addressed as "you".  "Licensees" and
-"recipients" may be individuals or organizations.
-
-  To "modify" a work means to copy from or adapt all or part of the work
-in a fashion requiring copyright permission, other than the making of an
-exact copy.  The resulting work is called a "modified version" of the
-earlier work or a work "based on" the earlier work.
-
-  A "covered work" means either the unmodified Program or a work based
-on the Program.
-
-  To "propagate" a work means to do anything with it that, without
-permission, would make you directly or secondarily liable for
-infringement under applicable copyright law, except executing it on a
-computer or modifying a private copy.  Propagation includes copying,
-distribution (with or without modification), making available to the
-public, and in some countries other activities as well.
-
-  To "convey" a work means any kind of propagation that enables other
-parties to make or receive copies.  Mere interaction with a user through
-a computer network, with no transfer of a copy, is not conveying.
-
-  An interactive user interface displays "Appropriate Legal Notices"
-to the extent that it includes a convenient and prominently visible
-feature that (1) displays an appropriate copyright notice, and (2)
-tells the user that there is no warranty for the work (except to the
-extent that warranties are provided), that licensees may convey the
-work under this License, and how to view a copy of this License.  If
-the interface presents a list of user commands or options, such as a
-menu, a prominent item in the list meets this criterion.
-
-  1. Source Code.
-
-  The "source code" for a work means the preferred form of the work
-for making modifications to it.  "Object code" means any non-source
-form of a work.
-
-  A "Standard Interface" means an interface that either is an official
-standard defined by a recognized standards body, or, in the case of
-interfaces specified for a particular programming language, one that
-is widely used among developers working in that language.
-
-  The "System Libraries" of an executable work include anything, other
-than the work as a whole, that (a) is included in the normal form of
-packaging a Major Component, but which is not part of that Major
-Component, and (b) serves only to enable use of the work with that
-Major Component, or to implement a Standard Interface for which an
-implementation is available to the public in source code form.  A
-"Major Component", in this context, means a major essential component
-(kernel, window system, and so on) of the specific operating system
-(if any) on which the executable work runs, or a compiler used to
-produce the work, or an object code interpreter used to run it.
-
-  The "Corresponding Source" for a work in object code form means all
-the source code needed to generate, install, and (for an executable
-work) run the object code and to modify the work, including scripts to
-control those activities.  However, it does not include the work's
-System Libraries, or general-purpose tools or generally available free
-programs which are used unmodified in performing those activities but
-which are not part of the work.  For example, Corresponding Source
-includes interface definition files associated with source files for
-the work, and the source code for shared libraries and dynamically
-linked subprograms that the work is specifically designed to require,
-such as by intimate data communication or control flow between those
-subprograms and other parts of the work.
-
-  The Corresponding Source need not include anything that users
-can regenerate automatically from other parts of the Corresponding
-Source.
-
-  The Corresponding Source for a work in source code form is that
-same work.
-
-  2. Basic Permissions.
-
-  All rights granted under this License are granted for the term of
-copyright on the Program, and are irrevocable provided the stated
-conditions are met.  This License explicitly affirms your unlimited
-permission to run the unmodified Program.  The output from running a
-covered work is covered by this License only if the output, given its
-content, constitutes a covered work.  This License acknowledges your
-rights of fair use or other equivalent, as provided by copyright law.
-
-  You may make, run and propagate covered works that you do not
-convey, without conditions so long as your license otherwise remains
-in force.  You may convey covered works to others for the sole purpose
-of having them make modifications exclusively for you, or provide you
-with facilities for running those works, provided that you comply with
-the terms of this License in conveying all material for which you do
-not control copyright.  Those thus making or running the covered works
-for you must do so exclusively on your behalf, under your direction
-and control, on terms that prohibit them from making any copies of
-your copyrighted material outside their relationship with you.
-
-  Conveying under any other circumstances is permitted solely under
-the conditions stated below.  Sublicensing is not allowed; section 10
-makes it unnecessary.
-
-  3. Protecting Users' Legal Rights From Anti-Circumvention Law.
-
-  No covered work shall be deemed part of an effective technological
-measure under any applicable law fulfilling obligations under article
-11 of the WIPO copyright treaty adopted on 20 December 1996, or
-similar laws prohibiting or restricting circumvention of such
-measures.
-
-  When you convey a covered work, you waive any legal power to forbid
-circumvention of technological measures to the extent such circumvention
-is effected by exercising rights under this License with respect to
-the covered work, and you disclaim any intention to limit operation or
-modification of the work as a means of enforcing, against the work's
-users, your or third parties' legal rights to forbid circumvention of
-technological measures.
-
-  4. Conveying Verbatim Copies.
-
-  You may convey verbatim copies of the Program's source code as you
-receive it, in any medium, provided that you conspicuously and
-appropriately publish on each copy an appropriate copyright notice;
-keep intact all notices stating that this License and any
-non-permissive terms added in accord with section 7 apply to the code;
-keep intact all notices of the absence of any warranty; and give all
-recipients a copy of this License along with the Program.
-
-  You may charge any price or no price for each copy that you convey,
-and you may offer support or warranty protection for a fee.
-
-  5. Conveying Modified Source Versions.
-
-  You may convey a work based on the Program, or the modifications to
-produce it from the Program, in the form of source code under the
-terms of section 4, provided that you also meet all of these conditions:
-
-    a) The work must carry prominent notices stating that you modified
-    it, and giving a relevant date.
-
-    b) The work must carry prominent notices stating that it is
-    released under this License and any conditions added under section
-    7.  This requirement modifies the requirement in section 4 to
-    "keep intact all notices".
-
-    c) You must license the entire work, as a whole, under this
-    License to anyone who comes into possession of a copy.  This
-    License will therefore apply, along with any applicable section 7
-    additional terms, to the whole of the work, and all its parts,
-    regardless of how they are packaged.  This License gives no
-    permission to license the work in any other way, but it does not
-    invalidate such permission if you have separately received it.
-
-    d) If the work has interactive user interfaces, each must display
-    Appropriate Legal Notices; however, if the Program has interactive
-    interfaces that do not display Appropriate Legal Notices, your
-    work need not make them do so.
-
-  A compilation of a covered work with other separate and independent
-works, which are not by their nature extensions of the covered work,
-and which are not combined with it such as to form a larger program,
-in or on a volume of a storage or distribution medium, is called an
-"aggregate" if the compilation and its resulting copyright are not
-used to limit the access or legal rights of the compilation's users
-beyond what the individual works permit.  Inclusion of a covered work
-in an aggregate does not cause this License to apply to the other
-parts of the aggregate.
-
-  6. Conveying Non-Source Forms.
-
-  You may convey a covered work in object code form under the terms
-of sections 4 and 5, provided that you also convey the
-machine-readable Corresponding Source under the terms of this License,
-in one of these ways:
-
-    a) Convey the object code in, or embodied in, a physical product
-    (including a physical distribution medium), accompanied by the
-    Corresponding Source fixed on a durable physical medium
-    customarily used for software interchange.
-
-    b) Convey the object code in, or embodied in, a physical product
-    (including a physical distribution medium), accompanied by a
-    written offer, valid for at least three years and valid for as
-    long as you offer spare parts or customer support for that product
-    model, to give anyone who possesses the object code either (1) a
-    copy of the Corresponding Source for all the software in the
-    product that is covered by this License, on a durable physical
-    medium customarily used for software interchange, for a price no
-    more than your reasonable cost of physically performing this
-    conveying of source, or (2) access to copy the
-    Corresponding Source from a network server at no charge.
-
-    c) Convey individual copies of the object code with a copy of the
-    written offer to provide the Corresponding Source.  This
-    alternative is allowed only occasionally and noncommercially, and
-    only if you received the object code with such an offer, in accord
-    with subsection 6b.
-
-    d) Convey the object code by offering access from a designated
-    place (gratis or for a charge), and offer equivalent access to the
-    Corresponding Source in the same way through the same place at no
-    further charge.  You need not require recipients to copy the
-    Corresponding Source along with the object code.  If the place to
-    copy the object code is a network server, the Corresponding Source
-    may be on a different server (operated by you or a third party)
-    that supports equivalent copying facilities, provided you maintain
-    clear directions next to the object code saying where to find the
-    Corresponding Source.  Regardless of what server hosts the
-    Corresponding Source, you remain obligated to ensure that it is
-    available for as long as needed to satisfy these requirements.
-
-    e) Convey the object code using peer-to-peer transmission, provided
-    you inform other peers where the object code and Corresponding
-    Source of the work are being offered to the general public at no
-    charge under subsection 6d.
-
-  A separable portion of the object code, whose source code is excluded
-from the Corresponding Source as a System Library, need not be
-included in conveying the object code work.
-
-  A "User Product" is either (1) a "consumer product", which means any
-tangible personal property which is normally used for personal, family,
-or household purposes, or (2) anything designed or sold for incorporation
-into a dwelling.  In determining whether a product is a consumer product,
-doubtful cases shall be resolved in favor of coverage.  For a particular
-product received by a particular user, "normally used" refers to a
-typical or common use of that class of product, regardless of the status
-of the particular user or of the way in which the particular user
-actually uses, or expects or is expected to use, the product.  A product
-is a consumer product regardless of whether the product has substantial
-commercial, industrial or non-consumer uses, unless such uses represent
-the only significant mode of use of the product.
-
-  "Installation Information" for a User Product means any methods,
-procedures, authorization keys, or other information required to install
-and execute modified versions of a covered work in that User Product from
-a modified version of its Corresponding Source.  The information must
-suffice to ensure that the continued functioning of the modified object
-code is in no case prevented or interfered with solely because
-modification has been made.
-
-  If you convey an object code work under this section in, or with, or
-specifically for use in, a User Product, and the conveying occurs as
-part of a transaction in which the right of possession and use of the
-User Product is transferred to the recipient in perpetuity or for a
-fixed term (regardless of how the transaction is characterized), the
-Corresponding Source conveyed under this section must be accompanied
-by the Installation Information.  But this requirement does not apply
-if neither you nor any third party retains the ability to install
-modified object code on the User Product (for example, the work has
-been installed in ROM).
-
-  The requirement to provide Installation Information does not include a
-requirement to continue to provide support service, warranty, or updates
-for a work that has been modified or installed by the recipient, or for
-the User Product in which it has been modified or installed.  Access to a
-network may be denied when the modification itself materially and
-adversely affects the operation of the network or violates the rules and
-protocols for communication across the network.
-
-  Corresponding Source conveyed, and Installation Information provided,
-in accord with this section must be in a format that is publicly
-documented (and with an implementation available to the public in
-source code form), and must require no special password or key for
-unpacking, reading or copying.
-
-  7. Additional Terms.
-
-  "Additional permissions" are terms that supplement the terms of this
-License by making exceptions from one or more of its conditions.
-Additional permissions that are applicable to the entire Program shall
-be treated as though they were included in this License, to the extent
-that they are valid under applicable law.  If additional permissions
-apply only to part of the Program, that part may be used separately
-under those permissions, but the entire Program remains governed by
-this License without regard to the additional permissions.
-
-  When you convey a copy of a covered work, you may at your option
-remove any additional permissions from that copy, or from any part of
-it.  (Additional permissions may be written to require their own
-removal in certain cases when you modify the work.)  You may place
-additional permissions on material, added by you to a covered work,
-for which you have or can give appropriate copyright permission.
-
-  Notwithstanding any other provision of this License, for material you
-add to a covered work, you may (if authorized by the copyright holders of
-that material) supplement the terms of this License with terms:
-
-    a) Disclaiming warranty or limiting liability differently from the
-    terms of sections 15 and 16 of this License; or
-
-    b) Requiring preservation of specified reasonable legal notices or
-    author attributions in that material or in the Appropriate Legal
-    Notices displayed by works containing it; or
-
-    c) Prohibiting misrepresentation of the origin of that material, or
-    requiring that modified versions of such material be marked in
-    reasonable ways as different from the original version; or
-
-    d) Limiting the use for publicity purposes of names of licensors or
-    authors of the material; or
-
-    e) Declining to grant rights under trademark law for use of some
-    trade names, trademarks, or service marks; or
-
-    f) Requiring indemnification of licensors and authors of that
-    material by anyone who conveys the material (or modified versions of
-    it) with contractual assumptions of liability to the recipient, for
-    any liability that these contractual assumptions directly impose on
-    those licensors and authors.
-
-  All other non-permissive additional terms are considered "further
-restrictions" within the meaning of section 10.  If the Program as you
-received it, or any part of it, contains a notice stating that it is
-governed by this License along with a term that is a further
-restriction, you may remove that term.  If a license document contains
-a further restriction but permits relicensing or conveying under this
-License, you may add to a covered work material governed by the terms
-of that license document, provided that the further restriction does
-not survive such relicensing or conveying.
-
-  If you add terms to a covered work in accord with this section, you
-must place, in the relevant source files, a statement of the
-additional terms that apply to those files, or a notice indicating
-where to find the applicable terms.
-
-  Additional terms, permissive or non-permissive, may be stated in the
-form of a separately written license, or stated as exceptions;
-the above requirements apply either way.
-
-  8. Termination.
-
-  You may not propagate or modify a covered work except as expressly
-provided under this License.  Any attempt otherwise to propagate or
-modify it is void, and will automatically terminate your rights under
-this License (including any patent licenses granted under the third
-paragraph of section 11).
-
-  However, if you cease all violation of this License, then your
-license from a particular copyright holder is reinstated (a)
-provisionally, unless and until the copyright holder explicitly and
-finally terminates your license, and (b) permanently, if the copyright
-holder fails to notify you of the violation by some reasonable means
-prior to 60 days after the cessation.
-
-  Moreover, your license from a particular copyright holder is
-reinstated permanently if the copyright holder notifies you of the
-violation by some reasonable means, this is the first time you have
-received notice of violation of this License (for any work) from that
-copyright holder, and you cure the violation prior to 30 days after
-your receipt of the notice.
-
-  Termination of your rights under this section does not terminate the
-licenses of parties who have received copies or rights from you under
-this License.  If your rights have been terminated and not permanently
-reinstated, you do not qualify to receive new licenses for the same
-material under section 10.
-
-  9. Acceptance Not Required for Having Copies.
-
-  You are not required to accept this License in order to receive or
-run a copy of the Program.  Ancillary propagation of a covered work
-occurring solely as a consequence of using peer-to-peer transmission
-to receive a copy likewise does not require acceptance.  However,
-nothing other than this License grants you permission to propagate or
-modify any covered work.  These actions infringe copyright if you do
-not accept this License.  Therefore, by modifying or propagating a
-covered work, you indicate your acceptance of this License to do so.
-
-  10. Automatic Licensing of Downstream Recipients.
-
-  Each time you convey a covered work, the recipient automatically
-receives a license from the original licensors, to run, modify and
-propagate that work, subject to this License.  You are not responsible
-for enforcing compliance by third parties with this License.
-
-  An "entity transaction" is a transaction transferring control of an
-organization, or substantially all assets of one, or subdividing an
-organization, or merging organizations.  If propagation of a covered
-work results from an entity transaction, each party to that
-transaction who receives a copy of the work also receives whatever
-licenses to the work the party's predecessor in interest had or could
-give under the previous paragraph, plus a right to possession of the
-Corresponding Source of the work from the predecessor in interest, if
-the predecessor has it or can get it with reasonable efforts.
-
-  You may not impose any further restrictions on the exercise of the
-rights granted or affirmed under this License.  For example, you may
-not impose a license fee, royalty, or other charge for exercise of
-rights granted under this License, and you may not initiate litigation
-(including a cross-claim or counterclaim in a lawsuit) alleging that
-any patent claim is infringed by making, using, selling, offering for
-sale, or importing the Program or any portion of it.
-
-  11. Patents.
-
-  A "contributor" is a copyright holder who authorizes use under this
-License of the Program or a work on which the Program is based.  The
-work thus licensed is called the contributor's "contributor version".
-
-  A contributor's "essential patent claims" are all patent claims
-owned or controlled by the contributor, whether already acquired or
-hereafter acquired, that would be infringed by some manner, permitted
-by this License, of making, using, or selling its contributor version,
-but do not include claims that would be infringed only as a
-consequence of further modification of the contributor version.  For
-purposes of this definition, "control" includes the right to grant
-patent sublicenses in a manner consistent with the requirements of
-this License.
-
-  Each contributor grants you a non-exclusive, worldwide, royalty-free
-patent license under the contributor's essential patent claims, to
-make, use, sell, offer for sale, import and otherwise run, modify and
-propagate the contents of its contributor version.
-
-  In the following three paragraphs, a "patent license" is any express
-agreement or commitment, however denominated, not to enforce a patent
-(such as an express permission to practice a patent or covenant not to
-sue for patent infringement).  To "grant" such a patent license to a
-party means to make such an agreement or commitment not to enforce a
-patent against the party.
-
-  If you convey a covered work, knowingly relying on a patent license,
-and the Corresponding Source of the work is not available for anyone
-to copy, free of charge and under the terms of this License, through a
-publicly available network server or other readily accessible means,
-then you must either (1) cause the Corresponding Source to be so
-available, or (2) arrange to deprive yourself of the benefit of the
-patent license for this particular work, or (3) arrange, in a manner
-consistent with the requirements of this License, to extend the patent
-license to downstream recipients.  "Knowingly relying" means you have
-actual knowledge that, but for the patent license, your conveying the
-covered work in a country, or your recipient's use of the covered work
-in a country, would infringe one or more identifiable patents in that
-country that you have reason to believe are valid.
-
-  If, pursuant to or in connection with a single transaction or
-arrangement, you convey, or propagate by procuring conveyance of, a
-covered work, and grant a patent license to some of the parties
-receiving the covered work authorizing them to use, propagate, modify
-or convey a specific copy of the covered work, then the patent license
-you grant is automatically extended to all recipients of the covered
-work and works based on it.
-
-  A patent license is "discriminatory" if it does not include within
-the scope of its coverage, prohibits the exercise of, or is
-conditioned on the non-exercise of one or more of the rights that are
-specifically granted under this License.  You may not convey a covered
-work if you are a party to an arrangement with a third party that is
-in the business of distributing software, under which you make payment
-to the third party based on the extent of your activity of conveying
-the work, and under which the third party grants, to any of the
-parties who would receive the covered work from you, a discriminatory
-patent license (a) in connection with copies of the covered work
-conveyed by you (or copies made from those copies), or (b) primarily
-for and in connection with specific products or compilations that
-contain the covered work, unless you entered into that arrangement,
-or that patent license was granted, prior to 28 March 2007.
-
-  Nothing in this License shall be construed as excluding or limiting
-any implied license or other defenses to infringement that may
-otherwise be available to you under applicable patent law.
-
-  12. No Surrender of Others' Freedom.
-
-  If conditions are imposed on you (whether by court order, agreement or
-otherwise) that contradict the conditions of this License, they do not
-excuse you from the conditions of this License.  If you cannot convey a
-covered work so as to satisfy simultaneously your obligations under this
-License and any other pertinent obligations, then as a consequence you may
-not convey it at all.  For example, if you agree to terms that obligate you
-to collect a royalty for further conveying from those to whom you convey
-the Program, the only way you could satisfy both those terms and this
-License would be to refrain entirely from conveying the Program.
-
-  13. Use with the GNU Affero General Public License.
-
-  Notwithstanding any other provision of this License, you have
-permission to link or combine any covered work with a work licensed
-under version 3 of the GNU Affero General Public License into a single
-combined work, and to convey the resulting work.  The terms of this
-License will continue to apply to the part which is the covered work,
-but the special requirements of the GNU Affero General Public License,
-section 13, concerning interaction through a network will apply to the
-combination as such.
-
-  14. Revised Versions of this License.
-
-  The Free Software Foundation may publish revised and/or new versions of
-the GNU General Public License from time to time.  Such new versions will
-be similar in spirit to the present version, but may differ in detail to
-address new problems or concerns.
-
-  Each version is given a distinguishing version number.  If the
-Program specifies that a certain numbered version of the GNU General
-Public License "or any later version" applies to it, you have the
-option of following the terms and conditions either of that numbered
-version or of any later version published by the Free Software
-Foundation.  If the Program does not specify a version number of the
-GNU General Public License, you may choose any version ever published
-by the Free Software Foundation.
-
-  If the Program specifies that a proxy can decide which future
-versions of the GNU General Public License can be used, that proxy's
-public statement of acceptance of a version permanently authorizes you
-to choose that version for the Program.
-
-  Later license versions may give you additional or different
-permissions.  However, no additional obligations are imposed on any
-author or copyright holder as a result of your choosing to follow a
-later version.
-
-  15. Disclaimer of Warranty.
-
-  THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
-APPLICABLE LAW.  EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
-HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY
-OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
-THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
-PURPOSE.  THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM
-IS WITH YOU.  SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
-ALL NECESSARY SERVICING, REPAIR OR CORRECTION.
-
-  16. Limitation of Liability.
-
-  IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
-WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS
-THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
-GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE
-USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
-DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
-PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),
-EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
-SUCH DAMAGES.
-
-  17. Interpretation of Sections 15 and 16.
-
-  If the disclaimer of warranty and limitation of liability provided
-above cannot be given local legal effect according to their terms,
-reviewing courts shall apply local law that most closely approximates
-an absolute waiver of all civil liability in connection with the
-Program, unless a warranty or assumption of liability accompanies a
-copy of the Program in return for a fee.
-
-                     END OF TERMS AND CONDITIONS
-
-            How to Apply These Terms to Your New Programs
-
-  If you develop a new program, and you want it to be of the greatest
-possible use to the public, the best way to achieve this is to make it
-free software which everyone can redistribute and change under these terms.
-
-  To do so, attach the following notices to the program.  It is safest
-to attach them to the start of each source file to most effectively
-state the exclusion of warranty; and each file should have at least
-the "copyright" line and a pointer to where the full notice is found.
-
-    <one line to give the program's name and a brief idea of what it does.>
-    Copyright (C) <year>  <name of author>
-
-    This program is free software: you can redistribute it and/or modify
-    it under the terms of the GNU General Public License as published by
-    the Free Software Foundation, either version 3 of the License, or
-    (at your option) any later version.
-
-    This program is distributed in the hope that it will be useful,
-    but WITHOUT ANY WARRANTY; without even the implied warranty of
-    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
-    GNU General Public License for more details.
-
-    You should have received a copy of the GNU General Public License
-    along with this program.  If not, see <http://www.gnu.org/licenses/>.
-
-Also add information on how to contact you by electronic and paper mail.
-
-  If the program does terminal interaction, make it output a short
-notice like this when it starts in an interactive mode:
-
-    <program>  Copyright (C) <year>  <name of author>
-    This program comes with ABSOLUTELY NO WARRANTY; for details type `show w'.
-    This is free software, and you are welcome to redistribute it
-    under certain conditions; type `show c' for details.
-
-The hypothetical commands `show w' and `show c' should show the appropriate
-parts of the General Public License.  Of course, your program's commands
-might be different; for a GUI interface, you would use an "about box".
-
-  You should also get your employer (if you work as a programmer) or school,
-if any, to sign a "copyright disclaimer" for the program, if necessary.
-For more information on this, and how to apply and follow the GNU GPL, see
-<http://www.gnu.org/licenses/>.
-
-  The GNU General Public License does not permit incorporating your program
-into proprietary programs.  If your program is a subroutine library, you
-may consider it more useful to permit linking proprietary applications with
-the library.  If this is what you want to do, use the GNU Lesser General
-Public License instead of this License.  But first, please read
-<http://www.gnu.org/philosophy/why-not-lgpl.html>.
diff --git a/openair1/SIMULATION/LTE_RECIPROCITY/Makefile b/openair1/SIMULATION/LTE_RECIPROCITY/Makefile
deleted file mode 100644
index c47675fdadcb0d32ae3037f8804a359a8447b674..0000000000000000000000000000000000000000
--- a/openair1/SIMULATION/LTE_RECIPROCITY/Makefile
+++ /dev/null
@@ -1,113 +0,0 @@
-include $(OPENAIR_HOME)/common/utils/Makefile.inc
-
-TOP_DIR = $(OPENAIR1_DIR)
-OPENAIR1_TOP = $(OPENAIR1_DIR)
-OPENAIR2_TOP = $(OPENAIR2_DIR)
-OPENAIR3 = $(OPENAIR3_DIR)
-
-CFLAGS += -m32 -DPHYSIM -DNODE_RG -DUSER_MODE -DPC_TARGET -DPC_DSP -DNB_ANTENNAS_RX=2 -DNB_ANTENNAS_TXRX=2 -DNB_ANTENNAS_TX=2 -DPHY_CONTEXT=1
-
-LFLAGS = -lm -lblas
-
-CFLAGS += -DOPENAIR_LTE #-DOFDMA_ULSCH -DIFFT_FPGA -DIFFT_FPGA_UE
-#CFLAGS += -DTBS_FIX
-CFLAGS += -DCELLULAR
-
-ASN1_MSG_INC = $(OPENAIR2_DIR)/RRC/LITE/MESSAGES
-
-ifdef EMOS
-CFLAGS += -DEMOS
-endif
-
-ifdef DEBUG_PHY
-CFLAGS += -DDEBUG_PHY
-endif
-
-ifdef MeNBMUE
-CFLAGS += -DMeNBMUE
-endif
-
-ifdef MU_RECEIVER
-CFLAGS += -DMU_RECEIVER
-endif
-
-ifdef ZBF_ENABLED
-CFLAGS += -DNULL_SHAPE_BF_ENABLED
-endif
-
-ifdef RANDOM_BF
-CFLAGS += -DRANDOM_BF
-endif
-
-ifdef PBS_SIM
-CFLAGS += -DPBS_SIM
-endif
-
-ifdef XFORMS
-CFLAGS += -DXFORMS
-LFLAGS += -lforms
-endif
-
-ifdef PERFECT_CE
-CFLAGS += -DPERFECT_CE
-endif
-
-CFLAGS += -DNO_RRM -DOPENAIR2 -DPHY_ABSTRACTION
-
-CFLAGS += -I/usr/include/X11 -I/usr/X11R6/include
-
-
-include $(TOP_DIR)/PHY/Makefile.inc
-SCHED_OBJS = $(TOP_DIR)/SCHED/phy_procedures_lte_common.o $(TOP_DIR)/SCHED/phy_procedures_lte_eNb.o $(TOP_DIR)/SCHED/phy_procedures_lte_ue.o
-#include $(TOP_DIR)/SCHED/Makefile.inc
-include $(TOP_DIR)/SIMULATION/Makefile.inc
-include $(OPENAIR2_DIR)/LAYER2/Makefile.inc
-include $(OPENAIR2_DIR)/RRC/LITE/MESSAGES/Makefile.inc
-
-CFLAGS += $(L2_incl) -I$(ASN1_MSG_INC) -I$(TOP_DIR) -I$(OPENAIR3)
-EXTRA_CFLAGS = 
-
-#STATS_OBJS += $(TOP_DIR)/ARCH/CBMIMO1/DEVICE_DRIVER/cbmimo1_proc.o
-
-#LAYER2_OBJ += $(OPENAIR2_DIR)/LAYER2/MAC/rar_tools.o
-LAYER2_OBJ = $(OPENAIR2_DIR)/LAYER2/MAC/lte_transport_init.o
-
-OBJ = $(PHY_OBJS) $(SIMULATION_OBJS) $(TOOLS_OBJS) $(SCHED_OBJS) $(LAYER2_OBJ) #$(ASN1_MSG_OBJS) 
-#OBJ2 = $(PHY_OBJS) $(SIMULATION_OBJS) $(TOOLS_OBJS)  
-
-ifdef XFORMS
-OBJ += ../../USERSPACE_TOOLS/SCOPE/lte_scope.o
-endif
-
-all: dlsim pbchsim pdcchsim ulsim pucchsim
-
-test: $(SIMULATION_OBJS) $(TOOLS_OBJS) $(TOP_DIR)/PHY/INIT/lte_init.o test.c
-	$(CC)  test.c -I$(TOP_DIR) -o test $(CFLAGS) $(SIMULATION_OBJS) $(TOOLS_OBJS) -lm 
-
-$(OBJ) : %.o : %.c
-	@echo 
-	@echo Compiling $< ...
-	@$(CC) -c $(CFLAGS) -o $@ $<
-
-recsim : $(OBJ) recsim.c
-	@echo "Compiling recsim.c ..."
-	@$(CC) recsim.c  -o recsim $(CFLAGS) $(OBJ) $(LFLAGS) #-static -L/usr/lib/libblas
-
-recsim_eNB2UE : $(OBJ) recsim_eNB2UE.c
-	@echo "Compiling recsim_eNB2UE.c ..."
-	@$(CC) recsim_eNB2UE.c  -o recsim_eNB2UE $(CFLAGS) $(OBJ) $(LFLAGS) #-static -L/usr/lib/libblas
-
-recsim_eNBUE4 : $(OBJ) recsim_eNBUE4.c
-	@echo "Compiling recsim_eNBUE4.c ..."
-	@$(CC) recsim_eNBUE4.c  -o recsim_eNBUE4 $(CFLAGS) $(OBJ) $(LFLAGS) #-static -L/usr/lib/libblas
-
-clean :
-	rm -f $(OBJ)
-	rm -f *.o
-
-cleanall : clean
-	rm -f dlsim pbchsim pdcchsim ulsim pucchsim 
-	rm -f *.exe*
-
-showcflags :
-	@echo $(CFLAGS)
diff --git a/openair1/SIMULATION/LTE_RECIPROCITY/coeffs.h b/openair1/SIMULATION/LTE_RECIPROCITY/coeffs.h
deleted file mode 100644
index 0b97aa45192a41174808631cb5967993e6eee1c8..0000000000000000000000000000000000000000
--- a/openair1/SIMULATION/LTE_RECIPROCITY/coeffs.h
+++ /dev/null
@@ -1,51 +0,0 @@
-/*******************************************************************************
-    OpenAirInterface
-    Copyright(c) 1999 - 2014 Eurecom
-
-    OpenAirInterface is free software: you can redistribute it and/or modify
-    it under the terms of the GNU General Public License as published by
-    the Free Software Foundation, either version 3 of the License, or
-    (at your option) any later version.
-
-
-    OpenAirInterface is distributed in the hope that it will be useful,
-    but WITHOUT ANY WARRANTY; without even the implied warranty of
-    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
-    GNU General Public License for more details.
-
-    You should have received a copy of the GNU General Public License
-    along with OpenAirInterface.The full GNU General Public License is
-   included in this distribution in the file called "COPYING". If not,
-   see <http://www.gnu.org/licenses/>.
-
-  Contact Information
-  OpenAirInterface Admin: openair_admin@eurecom.fr
-  OpenAirInterface Tech : openair_tech@eurecom.fr
-  OpenAirInterface Dev  : openair4g-devel@eurecom.fr
-
-  Address      : Eurecom, Campus SophiaTech, 450 Route des Chappes, CS 50193 - 06904 Biot Sophia Antipolis cedex, FRANCE
-
- *******************************************************************************/
-double s_coeffs_eNB[11] = {-0.0031, 0.0131, -0.0101, -0.0843, 0.2630, 0.6428, 0.2630, -0.0843, -0.0101, 0.0131, -0.0031};
-int s_ord_fir_eNB = 11;
-
-double r_coeffs_eNB[6] = {-0.0098, 0.0104, 0.4995, 0.4995, 0.0104, -0.0098};
-int r_ord_fir_eNB = 6;
-
-double s_coeffs_UE[9] = {0.0062, -0.0054, -0.0661, 0.2471, 0.6365, 0.2471, -0.0661, -0.0054, 0.0062};
-int s_ord_fir_UE = 9;
-
-double r_coeffs_UE[8] = {0.0050, -0.0303, 0.0163, 0.5090, 0.5090, 0.0163, -0.0303, 0.0050};
-int r_ord_fir_UE = 8;/*
-
-double s_coeffs_eNB[2] = {1, 0};
-int s_ord_fir_eNB = 2;
-
-double r_coeffs_eNB[2] = {1, 0};
-int r_ord_fir_eNB = 2;
-
-double s_coeffs_UE[2] = {1, 0};
-int s_ord_fir_UE = 2;
-
-double r_coeffs_UE[2] = {1, 0};
-int r_ord_fir_UE = 2;*/
diff --git a/openair1/SIMULATION/LTE_RECIPROCITY/mat_code/basictls.m b/openair1/SIMULATION/LTE_RECIPROCITY/mat_code/basictls.m
deleted file mode 100644
index 4c034e75e5d033d9d521e2657b7e042899cc9072..0000000000000000000000000000000000000000
--- a/openair1/SIMULATION/LTE_RECIPROCITY/mat_code/basictls.m
+++ /dev/null
@@ -1,29 +0,0 @@
-function[x]=basictls(A,B);
-
-%TLS de base voir Overview...
-%[U D V]=svd([A B]);
-%m=size(A,1);d=size(B,2);n=size(A,2);
-
-%Vdd=V((n+1):(n+d),(n+1):(n+d));
-%if det(Vdd)~=0 %non singular
-   % x=-V(1:size(A,2),(size(A,2)+1):(n+d)) * inv(Vdd);
-%    x=-V(1:n,(n+1):(n+d)) / Vdd;
-%else
-%     fprintf('\n*******Pas de solution, matrice singuliere Vdd********\n')
-%end
-
- px =[A B]' * [A B];
- ar=real(px(1,1));
- ai=imag(px(1,1));
- br=real(px(1,2));
- bi=imag(px(1,2));
- cr=real(px(2,1));
- ci=imag(px(2,1));
- dr=real(px(2,2));
- di=imag(px(2,2));
- 
- if((ar-dr+sqrt((ar-dr)*(ar-dr)+((br*br+bi*bi)*4)))~=0)
-     x=2*br/(ar-dr+sqrt((ar-dr)*(ar-dr)+((br*br+bi*bi)*4))) + 2i*bi/(ar-dr+sqrt((ar-dr)*(ar-dr)+((br*br+bi*bi)*4)));
- else
-     x=0+1i*0;
- end
diff --git a/openair1/SIMULATION/LTE_RECIPROCITY/mat_code/compar1.m b/openair1/SIMULATION/LTE_RECIPROCITY/mat_code/compar1.m
deleted file mode 100644
index ef8d0a0e03ce2725773039a1ab6e5ecc08adbc1f..0000000000000000000000000000000000000000
--- a/openair1/SIMULATION/LTE_RECIPROCITY/mat_code/compar1.m
+++ /dev/null
@@ -1,61 +0,0 @@
-close all;clear all;
-vulb;cal1;
-vdlb;
-aue1;
-aenb1;
-figure(1),subplot(231),plot(real(vdl(1537:1836)))
-title("dlchest et drschest")
-subplot(232),plot(imag(vdl(1537:1836)))
-subplot(233),plot(angle(vdl(1537:1836)),"m");
-subplot(234),plot(real(vul(901:1200)),"r")
-subplot(235),plot(imag(vul(901:1200)),"r")
-subplot(236),plot(angle(vul(901:1200)),"m")
-
-dec_f = 4;
-
-figure(2),subplot(231),plot(real(aenb(1:dec_f:300)))
-title("dlchest et drschest avec doquant")
-subplot(232),plot(imag(aenb(1:dec_f:300)))
-subplot(233),plot(angle(aenb(1:dec_f:300)),"m");
-subplot(234),plot(real(aue(1:dec_f:300)),"r")
-subplot(235),plot(imag(aue(1:dec_f:300)),"r")
-subplot(236),plot(angle(aue(1:dec_f:300)),"m")
-
-
-
-figure(3),subplot(131),plot(real(cal(1:dec_f:300)),"g");
-title("facteur de calib")
-subplot(132),plot(imag(cal(1:dec_f:300)),"g");
-subplot(133),plot(angle(cal(1:dec_f:300)),"g");
-
-figure(4),
-subplot(131),plot(real(cal(1:dec_f:300).*aue(1:dec_f:300)),"r")
-title("dl reconstruit")
-subplot(132),plot(imag(cal(1:dec_f:300).*aue(1:dec_f:300)),"r")
-subplot(133),plot(angle(cal(1:dec_f:300).*aue(1:dec_f:300)),"r")
-
-%figure(5),
-
-break
-
-vdrs2;vdrs4;cal1;
-vdl2;vdl4
-aue1;
-aenb1;
-figure(20),subplot(231),plot(real(vudl2(1:300)))
-title("dlchest et drschest")
-subplot(232),plot(imag(vudl2(1:300)))
-subplot(233),plot(angle(vudl2(1:300)),"m");
-subplot(234),plot(real(vudrs2(1:300)),"r")
-subplot(235),plot(imag(vudrs2(1:300)),"r")
-subplot(236),plot(angle(vudrs2(1:300)),"m")
-
-figure(21),subplot(231),plot(real(vudl4(1:300)))
-title("dlchest et drschest")
-subplot(232),plot(imag(vudl4(1:300)))
-subplot(233),plot(angle(vudl4(1:300)),"m");
-subplot(234),plot(real(vudrs4(1:300)),"r")
-subplot(235),plot(imag(vudrs4(1:300)),"r")
-subplot(236),plot(angle(vudrs4(1:300)),"m")
-
-
diff --git a/openair1/SIMULATION/LTE_RECIPROCITY/mat_code/compar2.m b/openair1/SIMULATION/LTE_RECIPROCITY/mat_code/compar2.m
deleted file mode 100644
index 65194881073023af8a1b9fbe6b80a067fd3dbdb6..0000000000000000000000000000000000000000
--- a/openair1/SIMULATION/LTE_RECIPROCITY/mat_code/compar2.m
+++ /dev/null
@@ -1,15 +0,0 @@
-close all;clear all;
-vulb;cal1;
-vdlb;
-aue1;
-aenb1;
-
-dec_f = 1;
-
-figure(1),subplot(131),plot(real(aenb(1:dec_f:300))), hold on, plot(real(cal(1:dec_f:300).*aue(1:dec_f:300)),"r")
-title("dlchest")
-subplot(132),plot(imag(aenb(1:dec_f:300))), hold on, plot(imag(cal(1:dec_f:300).*aue(1:dec_f:300)),"r")
-subplot(133),plot(angle(aenb(1:dec_f:300))); hold on, plot(angle(cal(1:dec_f:300).*aue(1:dec_f:300)),"r")
-
-figure(2), plot(real(aenb(1:dec_f:300))), hold on, plot(real(aue(1:dec_f:300)),"r")
-%figure(5),
diff --git a/openair1/SIMULATION/LTE_RECIPROCITY/mat_code/compar_b.m b/openair1/SIMULATION/LTE_RECIPROCITY/mat_code/compar_b.m
deleted file mode 100644
index 7c1b9ac305d0ff79adb2a0d1e18deada84876450..0000000000000000000000000000000000000000
--- a/openair1/SIMULATION/LTE_RECIPROCITY/mat_code/compar_b.m
+++ /dev/null
@@ -1,124 +0,0 @@
-% Comparaison Matlab FACTEUR P
-
-clear all
-clc
-K=10;
-SC=300;
-M=1;N=1;
-H_h=zeros(N,M,300,K);
-G_g=zeros(M,N,300,K);
-Vis=zeros(SC,N,M,8);
-
-vudl0;
-vudrs0;
-vudl1;
-vudrs1;
-vudl2;
-vudrs2;
-vudl3;
-vudrs3;
-vudl4;
-vudrs4;
-vudl5;
-vudrs5;
-vudl6;
-vudrs6;
-vudl7;
-vudrs7;
-vudl8;
-vudrs8;
-vudl9;
-vudrs9;
-cal1;
-vul1;
-vdl1;
-
-for s_c=1:SC
-    for n_k=1:K
-        eval(['H_h(1,1,' int2str(s_c) ',' int2str(n_k) ')=vudrs' int2str(n_k-1) '(' int2str(s_c) ');']);        
-        eval(['G_g(1,1,' int2str(s_c) ',' int2str(n_k) ')=vudl' int2str(n_k-1) '(' int2str(s_c) ');']);        
-    end    
-end
-
-Psyst(1,1,:)=cal;
-
-for s_c=1:SC
-    
-    for ii= 1:N % nb antennes emission
-        for jj= 1:M % nb antennes reception
-            %if(max(abs(squeeze(H_h(ii,jj,s_c,1:K))))~=0 && max(abs(squeeze(G_g(jj,ii,s_c,1:K))))~=0)
-            Pud(ii,jj,s_c)=basictls(squeeze(H_h(ii,jj,s_c,1:K)),squeeze(G_g(jj,ii,s_c,1:K)) );
-            
-                            C=squeeze(H_h(ii,jj,s_c,1:K));
-                            D=squeeze(G_g(jj,ii,s_c,1:K));
-                             px =[C D]'*[C D];
-                             ar=real(px(1,1));
-                             ai=imag(px(1,1));
-                             br=real(px(1,2));
-                             bi=imag(px(1,2));
-                             dr=real(px(2,2));
-                             di=imag(px(2,2));
-                             r1=2*br/(ar-dr+sqrt((ar-dr)*(ar-dr)+((br*br+bi*bi)*4)));
-                             r2=2*bi/(ar-dr+sqrt((ar-dr)*(ar-dr)+((br*br+bi*bi)*4)));
-                             Vis(s_c,ii,jj,:)=[ar ai br bi dr di r1 r2 ];
-            
-        end
-    end
-    
-end
-
-figure,plot(abs(cal(1:300).*vul(901:1200)));
-figure,plot(abs(vdl(1537:1836)),"r");
-
-break
-figure,plot(abs(cal(1:300).*aue(1:300)));
-figure,plot(abs(aenb(1:300)),"r");
-
-A=vul(1:300);
-B=vdl(1:300);
-figure,plot(abs(fft(ifft(A,512),300)),"b");
-figure,plot(abs(fft(ifft(B,512),300)),"b");
-
-
-
-close all;clear all;
-vul1;cal1;
-vdl1;
-aue1;
-aenb1;
-figure(1),subplot(231),plot(real(vdl(1537:1836)))
-title("dlchest et drschest")
-subplot(232),plot(imag(vdl(1537:1836)))
-subplot(233),plot(angle(vdl(1537:1836)),"m");
-subplot(234),plot(real(vul(901:1200)),"r")
-subplot(235),plot(imag(vul(901:1200)),"r")
-subplot(236),plot(angle(vul(901:1200)),"m")
-
-dec_f = 4;
-
-figure(2),subplot(231),plot(real(aenb(1:dec_f:300)))
-title("dlchest et drschest avec doquant")
-subplot(232),plot(imag(aenb(1:dec_f:300)))
-subplot(233),plot(angle(aenb(1:dec_f:300)),"m");
-subplot(234),plot(real(aue(1:dec_f:300)),"r")
-subplot(235),plot(imag(aue(1:dec_f:300)),"r")
-subplot(236),plot(angle(aue(1:dec_f:300)),"m")
-
-
-
-figure(3),subplot(131),plot(real(cal(1:dec_f:300)),"g");
-title("facteur de calib")
-subplot(132),plot(imag(cal(1:dec_f:300)),"g");
-subplot(133),plot(angle(cal(1:dec_f:300)),"g");
-
-figure(4),
-subplot(131),plot(real(cal(1:dec_f:300).*aue(1:dec_f:300)),"r")
-title("dl reconstruit")
-subplot(132),plot(imag(cal(1:dec_f:300).*aue(1:dec_f:300)),"r")
-subplot(133),plot(angle(cal(1:dec_f:300).*aue(1:dec_f:300)),"r")
-
-%figure(5),
-%title("Dif dlchest et dlcal")
-norm(vdl(1537:1836)-(cal(1:300).*aue(1:300)),2)
-
-
diff --git a/openair1/SIMULATION/LTE_RECIPROCITY/mat_code/compar_b1.m b/openair1/SIMULATION/LTE_RECIPROCITY/mat_code/compar_b1.m
deleted file mode 100644
index 00d88d50d7bfffd3a7e7d953e326c24c4f312cf8..0000000000000000000000000000000000000000
--- a/openair1/SIMULATION/LTE_RECIPROCITY/mat_code/compar_b1.m
+++ /dev/null
@@ -1,109 +0,0 @@
-% Comparaison Matlab FACTEUR P
-
-clear all
-clc
-K=10;
-SC=300;
-M=1;N=1;
-H_h=zeros(N,M,300,K);
-G_g=zeros(M,N,300,K);
-Vis=zeros(SC,N,M,8);
-
-vudl0;
-vudrs0;
-vudl1;
-vudrs1;
-vudl2;
-vudrs2;
-vudl3;
-vudrs3;
-vudl4;
-vudrs4;
-vudl5;
-vudrs5;
-vudl6;
-vudrs6;
-vudl7;
-vudrs7;
-vudl8;
-vudrs8;
-vudl9;
-vudrs9;
-cal1;
-vul1;
-vdl1;
-
-for s_c=1:SC
-    for n_k=1:K
-        eval(['H_h(1,1,' int2str(s_c) ',' int2str(n_k) ')=vudrs' int2str(n_k-1) '(' int2str(s_c) ');']);        
-        eval(['G_g(1,1,' int2str(s_c) ',' int2str(n_k) ')=vudl' int2str(n_k-1) '(' int2str(s_c) ');']);        
-    end    
-end
-
-Psyst(1,1,:)=cal;
-
-for s_c=1:SC
-    
-    for ii= 1:N % nb antennes emission
-        for jj= 1:M % nb antennes reception
-            %if(max(abs(squeeze(H_h(ii,jj,s_c,1:K))))~=0 && max(abs(squeeze(G_g(jj,ii,s_c,1:K))))~=0)
-            Pud(ii,jj,s_c)=basictls(squeeze(H_h(ii,jj,s_c,1:K)),squeeze(G_g(jj,ii,s_c,1:K)) );
-            
-                            C=squeeze(H_h(ii,jj,s_c,1:K));
-                            D=squeeze(G_g(jj,ii,s_c,1:K));
-                             px =[C D]'*[C D];
-                             ar=real(px(1,1));
-                             ai=imag(px(1,1));
-                             br=real(px(1,2));
-                             bi=imag(px(1,2));
-                             dr=real(px(2,2));
-                             di=imag(px(2,2));
-                             r1=2*br/(ar-dr+sqrt((ar-dr)*(ar-dr)+((br*br+bi*bi)*4)));
-                             r2=2*bi/(ar-dr+sqrt((ar-dr)*(ar-dr)+((br*br+bi*bi)*4)));
-                             Vis(s_c,ii,jj,:)=[ar ai br bi dr di r1 r2 ];
-            
-        end
-    end
-    
-end
-
-figure,plot(abs(cal(1:300).*vul(901:1200)));
-figure,plot(abs(vdl(1537:1836)),"r");
-
-break
-figure,plot(abs(cal(1:300).*aue(1:300)));
-figure,plot(abs(aenb(1:300)),"r");
-
-A=vul(1:300);
-B=vdl(1:300);
-figure,plot(abs(fft(ifft(A,512),300)),"b");
-figure,plot(abs(fft(ifft(B,512),300)),"b");
-
-
-
-close all;clear all;
-vul1;
-vdl1;
-aue1;
-aenb1;
-figure(1),subplot(231),plot(real(vdl(1537:1836)))
-subplot(232),plot(imag(vdl(1537:1836)))
-subplot(233),plot(angle(vdl(1537:1836)),"m");
-subplot(234),plot(real(vul(901:1200)),"r")
-subplot(235),plot(imag(vul(901:1200)),"r")
-subplot(236),plot(angle(vul(901:1200)),"m")
-
-
-figure(2),subplot(231),plot(real(aenb(1:300)))
-subplot(232),plot(imag(aenb(1:300)))
-subplot(233),plot(angle(aenb(1:300)),"m");
-subplot(234),plot(real(aue(1:300)),"r")
-subplot(235),plot(imag(aue(1:300)),"r")
-subplot(236),plot(angle(aue(1:300)),"m")
-
-
-cal1;
-figure,plot(real(cal(1:300)),"m");
-figure,plot(imag(cal(1:300)),"m");
-figure,plot(angle(cal(1:300)),"m");
-
diff --git a/openair1/SIMULATION/LTE_RECIPROCITY/mat_code/verifc.m b/openair1/SIMULATION/LTE_RECIPROCITY/mat_code/verifc.m
deleted file mode 100644
index 489033803d29075d87d9c70ed8f3993328337951..0000000000000000000000000000000000000000
--- a/openair1/SIMULATION/LTE_RECIPROCITY/mat_code/verifc.m
+++ /dev/null
@@ -1,21 +0,0 @@
-%% Verif Calibration
-close all, clear all;
-run("./LTE_RECIPROCITY/aue1.m");
-run("./LTE_RECIPROCITY/aenb1.m");
-run("./LTE_RECIPROCITY/cal1.m");
-run("./LTE_RECIPROCITY/vul1.m");
-run("./LTE_RECIPROCITY/vdl1.m");
-
-
-
-ul=vul(901:1200);
-dl=vdl(1537:1836);
-
-dl_est=cal(1:300).*ul;
-
-res=abs(dl)-abs(dl_est);
-
-%plot(res);
-figure();plot(abs(dl(50:150)),"g"),figure,plot(abs(ul(50:150)),"r");
-figure,plot(abs(cal(50:150)),"r");
-%figure(),plot(abs(ul),"m");
diff --git a/openair1/SIMULATION/LTE_RECIPROCITY/recsim.c b/openair1/SIMULATION/LTE_RECIPROCITY/recsim.c
deleted file mode 100644
index 1f496d77f991bb25d72626329db7181614799269..0000000000000000000000000000000000000000
--- a/openair1/SIMULATION/LTE_RECIPROCITY/recsim.c
+++ /dev/null
@@ -1,3223 +0,0 @@
-/*******************************************************************************
-    OpenAirInterface
-    Copyright(c) 1999 - 2014 Eurecom
-
-    OpenAirInterface is free software: you can redistribute it and/or modify
-    it under the terms of the GNU General Public License as published by
-    the Free Software Foundation, either version 3 of the License, or
-    (at your option) any later version.
-
-
-    OpenAirInterface is distributed in the hope that it will be useful,
-    but WITHOUT ANY WARRANTY; without even the implied warranty of
-    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
-    GNU General Public License for more details.
-
-    You should have received a copy of the GNU General Public License
-    along with OpenAirInterface.The full GNU General Public License is
-   included in this distribution in the file called "COPYING". If not,
-   see <http://www.gnu.org/licenses/>.
-
-  Contact Information
-  OpenAirInterface Admin: openair_admin@eurecom.fr
-  OpenAirInterface Tech : openair_tech@eurecom.fr
-  OpenAirInterface Dev  : openair4g-devel@eurecom.fr
-
-  Address      : Eurecom, Campus SophiaTech, 450 Route des Chappes, CS 50193 - 06904 Biot Sophia Antipolis cedex, FRANCE
-
- *******************************************************************************/
-#include <string.h>
-#include <math.h>
-#include <unistd.h>
-#include <execinfo.h>
-#include <signal.h>
-
-#include "SIMULATION/TOOLS/defs.h"
-#include "PHY/types.h"
-#include "PHY/defs.h"
-#include "PHY/vars.h"
-#include "MAC_INTERFACE/vars.h"
-#ifdef IFFT_FPGA
-#include "PHY/LTE_REFSIG/mod_table.h"
-#endif
-
-#include "ARCH/CBMIMO1/DEVICE_DRIVER/vars.h"
-#include "SCHED/defs.h"
-#include "SCHED/vars.h"
-#include "LAYER2/MAC/vars.h"
-
-#include "OCG_vars.h"
-
-#include "coeffs.h"
-
-#ifdef XFORMS
-#include "forms.h"
-#include "../../USERSPACE_TOOLS/SCOPE/lte_scope.h"
-#endif
-
-//#define AWGN
-//#define NO_DCI
-
-#define BW 7.68
-
-//modif start UL
-channel_desc_t *UE2eNB[NUMBER_OF_UE_MAX][NUMBER_OF_eNB_MAX];
-extern uint16_t beta_ack[16],beta_ri[16],beta_cqi[16];
-extern unsigned short dftsizes[33];
-extern short *ul_ref_sigs[30][2][33];
-//modif end UL
-
-PHY_VARS_eNB *PHY_vars_eNB;
-PHY_VARS_UE *PHY_vars_UE;
-
-void handler(int sig)
-{
-  void *array[10];
-  size_t size;
-
-  // get void*'s for all entries on the stack
-  size = backtrace(array, 10);
-
-  // print out all the frames to stderr
-  fprintf(stderr, "Error: signal %d:\n", sig);
-  backtrace_symbols_fd(array, size, 2);
-  exit(1);
-}
-
-
-#ifdef XFORMS
-void do_forms(FD_lte_scope *form, LTE_DL_FRAME_PARMS *frame_parms, short **channel, short **channel_f, short **rx_sig, short **rx_sig_f, short *dlsch_comp, short* dlsch_comp_i, short* dlsch_rho,
-              short *dlsch_llr, int coded_bits_per_codeword)
-{
-
-  int i,j,ind,k,s;
-
-  float Re,Im;
-  float mag_sig[NB_ANTENNAS_RX*4*NUMBER_OF_OFDM_CARRIERS*NUMBER_OF_OFDM_SYMBOLS_PER_SLOT],
-        sig_time[NB_ANTENNAS_RX*4*NUMBER_OF_OFDM_CARRIERS*NUMBER_OF_OFDM_SYMBOLS_PER_SLOT],
-        sig2[FRAME_LENGTH_COMPLEX_SAMPLES],
-        time2[FRAME_LENGTH_COMPLEX_SAMPLES],
-        I[25*12*11*4], Q[25*12*11*4],
-        *llr,*llr_time;
-
-  float avg, cum_avg;
-
-  llr = malloc(coded_bits_per_codeword*sizeof(float));
-  llr_time = malloc(coded_bits_per_codeword*sizeof(float));
-
-  // Channel frequency response
-  cum_avg = 0;
-  ind = 0;
-
-  for (j=0; j<4; j++) {
-    for (i=0; i<frame_parms->nb_antennas_rx; i++) {
-      for (k=0; k<NUMBER_OF_OFDM_CARRIERS*7; k++) {
-        sig_time[ind] = (float)ind;
-        Re = (float)(channel_f[(j<<1)+i][2*k]);
-        Im = (float)(channel_f[(j<<1)+i][2*k+1]);
-        //mag_sig[ind] = (short) rand();
-        mag_sig[ind] = (short)10*log10(1.0+((double)Re*Re + (double)Im*Im));
-        cum_avg += (short)sqrt((double)Re*Re + (double)Im*Im) ;
-        ind++;
-      }
-
-      //      ind+=NUMBER_OF_OFDM_CARRIERS/4; // spacing for visualization
-    }
-  }
-
-  avg = cum_avg/NUMBER_OF_USEFUL_CARRIERS;
-
-  //fl_set_xyplot_ybounds(form->channel_f,30,70);
-  fl_set_xyplot_data(form->channel_f,sig_time,mag_sig,ind,"","","");
-
-
-
-  // channel_t_re = rx_sig_f[0]
-  //for (i=0; i<FRAME_LENGTH_COMPLEX_SAMPLES_NO_PREFIX; i++)  {
-  for (i=0; i<NUMBER_OF_OFDM_CARRIERS*frame_parms->symbols_per_tti/2; i++)  {
-    sig2[i] = 10*log10(1.0+(double) ((rx_sig_f[0][4*i])*(rx_sig_f[0][4*i])+(rx_sig_f[0][4*i+1])*(rx_sig_f[0][4*i+1])));
-    time2[i] = (float) i;
-  }
-
-  //fl_set_xyplot_ybounds(form->channel_t_re,10,90);
-  fl_set_xyplot_data(form->channel_t_re,time2,sig2,NUMBER_OF_OFDM_CARRIERS*frame_parms->symbols_per_tti,"","","");
-  //fl_set_xyplot_data(form->channel_t_re,time2,sig2,FRAME_LENGTH_COMPLEX_SAMPLES_NO_PREFIX,"","","");
-
-
-  // channel_t_im = rx_sig[0]
-
-  for (i=0; i<FRAME_LENGTH_COMPLEX_SAMPLES; i++)  {
-    sig2[i] = 10*log10(1.0+(double) ((rx_sig[0][2*i])*(rx_sig[0][2*i])+(rx_sig[0][2*i+1])*(rx_sig[0][2*i+1])));
-    time2[i] = (float) i;
-  }
-
-  //fl_set_xyplot_ybounds(form->channel_t_im,0,100);
-  //fl_set_xyplot_data(form->channel_t_im,&time2[640*12*6],&sig2[640*12*6],640*12,"","","");
-  fl_set_xyplot_data(form->channel_t_im,time2,sig2,FRAME_LENGTH_COMPLEX_SAMPLES,"","","");
-  //}
-
-
-  // DLSCH LLR
-  for(i=0; i<coded_bits_per_codeword; i++) {
-    llr[i] = (float) dlsch_llr[i];
-    llr_time[i] = (float) i;
-  }
-
-  fl_set_xyplot_data(form->demod_out,llr_time,llr,coded_bits_per_codeword,"","","");
-  fl_set_xyplot_ybounds(form->demod_out,-1000,1000);
-
-  // DLSCH I/Q
-  j=0;
-
-  for (s=0; s<frame_parms->symbols_per_tti; s++) {
-    for(i=0; i<12*25; i++) {
-      I[j] = dlsch_comp[(2*25*12*s)+2*i];
-      Q[j] = dlsch_comp[(2*25*12*s)+2*i+1];
-      j++;
-    }
-
-    //if (s==2)
-    //  s=3;
-    //else if (s==5)
-    //  s=6;
-    //else if (s==8)
-    //  s=9;
-  }
-
-  fl_set_xyplot_data(form->scatter_plot,I,Q,j,"","","");
-  fl_set_xyplot_xbounds(form->scatter_plot,-2000,2000);
-  fl_set_xyplot_ybounds(form->scatter_plot,-2000,2000);
-
-  // DLSCH I/Q
-  j=0;
-
-  for (s=0; s<frame_parms->symbols_per_tti; s++) {
-    for(i=0; i<12*25; i++) {
-      I[j] = dlsch_comp_i[(2*25*12*s)+2*i];
-      Q[j] = dlsch_comp_i[(2*25*12*s)+2*i+1];
-      j++;
-    }
-
-  }
-
-  fl_set_xyplot_data(form->scatter_plot1,I,Q,j,"","","");
-  fl_set_xyplot_xbounds(form->scatter_plot1,-2000,2000);
-  fl_set_xyplot_ybounds(form->scatter_plot1,-2000,2000);
-
-  // DLSCH I/Q
-  j=0;
-
-  for (s=0; s<frame_parms->symbols_per_tti; s++) {
-    for(i=0; i<12*25; i++) {
-      I[j] = dlsch_rho[(2*25*12*s)+2*i];
-      Q[j] = dlsch_rho[(2*25*12*s)+2*i+1];
-      j++;
-    }
-
-  }
-
-  fl_set_xyplot_data(form->scatter_plot2,I,Q,j,"","","");
-
-  free(llr);
-  free(llr_time);
-
-}
-#endif
-
-void lte_param_init(unsigned char N_tx, unsigned char N_rx,unsigned char transmission_mode,uint8_t extended_prefix_flag,uint16_t Nid_cell,uint8_t tdd_config,uint8_t N_RB_DL,uint8_t osf)
-{
-
-  LTE_DL_FRAME_PARMS *lte_frame_parms;
-  int i;
-
-  printf("Start lte_param_init\n");
-  PHY_vars_eNB = malloc(sizeof(PHY_VARS_eNB));
-  PHY_vars_UE = malloc(sizeof(PHY_VARS_UE));
-  //PHY_config = malloc(sizeof(PHY_CONFIG));
-  mac_xface = malloc(sizeof(MAC_xface));
-
-  randominit(0);
-  set_taus_seed(0);
-
-  lte_frame_parms = &(PHY_vars_eNB->lte_frame_parms);
-
-  lte_frame_parms->N_RB_DL            = N_RB_DL;   //50 for 10MHz and 25 for 5 MHz
-  lte_frame_parms->N_RB_UL            = N_RB_DL;
-  lte_frame_parms->Ncp                = extended_prefix_flag;
-  lte_frame_parms->Nid_cell           = Nid_cell;
-  lte_frame_parms->nushift            = 0;
-  lte_frame_parms->nb_antennas_tx     = N_tx;
-  lte_frame_parms->nb_antennas_rx     = N_rx;
-  lte_frame_parms->phich_config_common.phich_resource         = oneSixth;
-  lte_frame_parms->tdd_config         = tdd_config;
-  lte_frame_parms->frame_type         = 1;
-  //  lte_frame_parms->Csrs = 2;
-  //  lte_frame_parms->Bsrs = 0;
-  //  lte_frame_parms->kTC = 0;44
-  //  lte_frame_parms->n_RRC = 0;
-  lte_frame_parms->mode1_flag = (transmission_mode == 1)? 1 : 0;
-
-  init_frame_parms(lte_frame_parms,osf);
-
-  //copy_lte_parms_to_phy_framing(lte_frame_parms, &(PHY_config->PHY_framing));
-
-  phy_init_top(lte_frame_parms); //allocation
-
-  lte_frame_parms->twiddle_fft      = twiddle_fft;
-  lte_frame_parms->twiddle_ifft     = twiddle_ifft;
-  lte_frame_parms->rev              = rev;
-
-  PHY_vars_UE->is_secondary_ue = 0;
-  PHY_vars_UE->lte_frame_parms = *lte_frame_parms;
-  PHY_vars_eNB->lte_frame_parms = *lte_frame_parms;
-
-  phy_init_lte_top(lte_frame_parms);
-  dump_frame_parms(lte_frame_parms);
-
-  for (i=0; i<3; i++)
-    lte_gold(lte_frame_parms,PHY_vars_UE->lte_gold_table[i],i);
-
-  phy_init_lte_ue(&PHY_vars_UE->lte_frame_parms,
-                  &PHY_vars_UE->lte_ue_common_vars,
-                  PHY_vars_UE->lte_ue_dlsch_vars,
-                  PHY_vars_UE->lte_ue_dlsch_vars_SI,
-                  PHY_vars_UE->lte_ue_dlsch_vars_ra,
-                  PHY_vars_UE->lte_ue_pbch_vars,
-                  PHY_vars_UE->lte_ue_pdcch_vars,
-                  PHY_vars_UE,0);
-
-  phy_init_lte_eNB(&PHY_vars_eNB->lte_frame_parms,
-                   &PHY_vars_eNB->lte_eNB_common_vars,
-                   PHY_vars_eNB->lte_eNB_ulsch_vars,
-                   0,
-                   PHY_vars_eNB,
-                   1,
-                   0);
-
-
-  printf("Done lte_param_init\n");
-
-
-}
-
-void do_bin(short *dl_ch_estimates, int dl_ch_estimates_length, unsigned char *input_buffer_UE, int dec_f)
-{
-  int l,k;
-  short temp;
-  short temp1;
-
-  int ind = 0;
-
-  for (l=0; l<dl_ch_estimates_length; l++) {
-    if (dl_ch_estimates[l]>0) {
-      input_buffer_UE[ind] = 0;
-      temp1 = dl_ch_estimates[l];
-    } else {
-      input_buffer_UE[ind] = 1;
-      temp1 = (-1)*dl_ch_estimates[l];
-    }
-
-    ind+=7;
-
-    for (k=0; k<7; k++) {
-      temp = temp1%2;
-      input_buffer_UE[ind-k] = (char)temp;
-      temp1 = temp1/2;
-    }
-
-    ind++;
-  }
-}
-
-
-/*void do_decalibration(short *input_RF, short *output_RF, int filter_length)
-{
-  int nn,mm;
-  //FIR in time domain IFFT?
-  //y(n) = b(1)*x(n) + b(2)*x(n-1) + ... + b(nb+1)*x(n-nb)
-  //             - a(2)*y(n-1) - ... - a(na+1)*y(n-na)
-      //b[0]=;
-     for (nn=0; nn<filter_length; nn++) {
-        for (mm=0; mm < K ; mm++) {
-        output_RF[nn] =+ b[mm]*input_RF[nn-mm];
-    }
-
-    }
-   }*/
-
-// Apply phase offsets
-void phase_offsets(double *re_in, double *im_in, double *re_out, double *im_out, int length_sig, double *phase_in, double phase_inc, int pos_neg)
-{
-
-  int k;
-  double tmp_re,tmp_im;
-  double phase;
-
-  for (k=0; k<length_sig; k++) {
-    re_out[k] = 0;
-    im_out[k] = 0;
-  }
-
-  phase = *phase_in;
-
-  for (k=0; k<length_sig; k++) {
-    tmp_re = re_in[k]*cos(phase) - pos_neg*im_in[k]*sin(phase);
-    tmp_im = pos_neg*re_in[k]*sin(phase) + im_in[k]*cos(phase);
-
-    re_out[k] = tmp_re;
-    im_out[k] = tmp_im;
-
-    phase += phase_inc;
-  }
-
-  *phase_in = phase;
-}
-
-
-void real_fir(double *re_in, double *im_in, double *re_out, double *im_out, double *coeffs, int ord_fir, int length_sig)
-{
-  int k, l;
-  double temp1, temp2;
-
-  for (k=0; k<length_sig; k++) {
-    re_out[k] = 0;
-    im_out[k] = 0;
-  }
-
-  for (k=ord_fir; k<length_sig; k++) {
-    temp1 = 0;
-    temp2 = 0;
-
-    for (l=0; l<ord_fir; l++) {
-      temp1 += coeffs[l]*re_in[k-l-1];
-      temp2 += coeffs[l]*im_in[k-l-1];
-    }
-
-    re_out[k] = temp1;
-    im_out[k] = temp2;
-  }
-}
-
-
-// Modif Channel quantization at UE
-void do_quantization(PHY_VARS_UE *PHY_vars_UE, unsigned int nsymb, uint8_t pilot1, int quant_v, short *dl_ch_estimates, int eNB_id, int dec_f)
-{
-  int k;
-  short tx_energy[4];
-  short dl_ch_estimates_norm[4][PHY_vars_UE->lte_frame_parms.ofdm_symbol_size*nsymb];
-  short dl_ch_estimates_norm_short[PHY_vars_UE->lte_frame_parms.ofdm_symbol_size*nsymb];
-
-  //tx_energy[0] = signal_energy(&(PHY_vars_UE->lte_ue_common_vars.dl_ch_estimates[eNB_id][0][0]),PHY_vars_UE->lte_frame_parms.ofdm_symbol_size*nsymb);
-  for(k=0; k<4; k++)
-    tx_energy[k] = 8;
-
-  /*
-  for (k=0; k<PHY_vars_UE->lte_frame_parms.ofdm_symbol_size*nsymb; k+=2)
-  tx_energy[0]+= ((short *)PHY_vars_UE->lte_ue_common_vars.dl_ch_estimates[0][0])[k]*((short *)PHY_vars_UE->lte_ue_common_vars.dl_ch_estimates[0][0])[k] + ((short *)PHY_vars_UE->lte_ue_common_vars.dl_ch_estimates[0][0])[k+1]*((short *)PHY_vars_UE->lte_ue_common_vars.dl_ch_estimates[0][0])[k+1];
-  */
-  //printf("tx_energy[%d] = %d\n",0,tx_energy[0]);
-  for (k=0; k<PHY_vars_UE->lte_frame_parms.ofdm_symbol_size*nsymb; k++) {
-    dl_ch_estimates_norm[0][k] = ((short *)PHY_vars_UE->lte_ue_common_vars.dl_ch_estimates[0][0])[k]/tx_energy[0];
-    //printf("dl_ch_estimates[%d] = %d , %d\n",k,PHY_vars_UE->lte_ue_common_vars.dl_ch_estimates[eNB_id][0][k],dl_ch_estimates_norm[0][k]);
-  }
-
-  //write_output("txsig_11.m","txs_11", dl_ch_estimates_norm[0],PHY_vars_UE->lte_frame_parms.ofdm_symbol_size*nsymb,1,0);
-  //exit(-1);
-
-  for (k=0; k<PHY_vars_UE->lte_frame_parms.ofdm_symbol_size*nsymb; k++)
-    dl_ch_estimates_norm_short[k] = dl_ch_estimates_norm[0][k];
-
-  for (k=pilot1*2*512; k<pilot1*2*512+2*300-1; k+=(2*dec_f)) {
-    if (dl_ch_estimates_norm_short[k]>(quant_v-1))
-      dl_ch_estimates[k-pilot1*2*512] = quant_v-1;
-    else if (dl_ch_estimates_norm_short[k]< (-quant_v))
-      dl_ch_estimates[k-pilot1*2*512] = -quant_v;
-    else
-      dl_ch_estimates[k-pilot1*2*512] = dl_ch_estimates_norm_short[k];
-
-    if (dl_ch_estimates_norm_short[k+1]>(quant_v-1))
-      dl_ch_estimates[k+1-pilot1*2*512] = quant_v-1;
-    else if (dl_ch_estimates_norm_short[k+1]< (-quant_v))
-      dl_ch_estimates[k+1-pilot1*2*512] = -quant_v;
-    else
-      dl_ch_estimates[k+1-pilot1*2*512] = dl_ch_estimates_norm_short[k+1];
-  }
-
-  if (PHY_vars_eNB->lte_frame_parms.nb_antennas_tx>1) {
-    //tx_energy[2]=signal_energy(&(PHY_vars_UE->lte_ue_common_vars.dl_ch_estimates[eNB_id][2][0]),PHY_vars_UE->lte_frame_parms.ofdm_symbol_size*nsymb);
-    printf("tx_energy[%d] = %d\n",1,tx_energy[1]);
-
-    for (k=0; k<PHY_vars_UE->lte_frame_parms.ofdm_symbol_size*nsymb; k++)
-      dl_ch_estimates_norm[1][k] = PHY_vars_UE->lte_ue_common_vars.dl_ch_estimates[2][0][k]/tx_energy[1];
-
-    for (k=0; k<PHY_vars_UE->lte_frame_parms.ofdm_symbol_size*nsymb; k++)
-      dl_ch_estimates_norm_short[k] = ((short *)dl_ch_estimates_norm[1])[k];
-
-
-    for (k=pilot1*2*512; k<pilot1*2*512+2*300-1; k+=(2*dec_f)) {
-      if (dl_ch_estimates_norm_short[k]> (quant_v-1))
-        dl_ch_estimates[k-pilot1*2*512+(2*300)/dec_f] = quant_v-1;
-      else if (dl_ch_estimates_norm_short[k]< -quant_v)
-        dl_ch_estimates[k-pilot1*2*512+(2*300)/dec_f] = -quant_v;
-      else
-        dl_ch_estimates[k-pilot1*2*512+(2*300)/dec_f] = dl_ch_estimates_norm_short[k];
-
-      if (dl_ch_estimates_norm_short[k+1]> (quant_v-1))
-        dl_ch_estimates[k-pilot1*2*512+1+(2*300)/dec_f] = quant_v-1;
-      else if (dl_ch_estimates_norm_short[k]< -quant_v)
-        dl_ch_estimates[k-pilot1*2*512+1+(2*300)/dec_f] = -quant_v;
-      else
-        dl_ch_estimates[k-pilot1*2*512+1+(2*300)/dec_f] = dl_ch_estimates_norm_short[k+1];
-    }
-  }
-
-  if (PHY_vars_UE->lte_frame_parms.nb_antennas_rx>1) {
-    //tx_energy[1] = signal_energy(&(PHY_vars_UE->lte_ue_common_vars.dl_ch_estimates[eNB_id][1][0]),PHY_vars_UE->lte_frame_parms.ofdm_symbol_size*nsymb);
-    printf("tx_energy[%d] = %d\n",2,tx_energy[2]);
-
-    for (k=0; k<PHY_vars_UE->lte_frame_parms.ofdm_symbol_size*nsymb; k++)
-      dl_ch_estimates_norm[2][k] = PHY_vars_UE->lte_ue_common_vars.dl_ch_estimates[1][0][k]/tx_energy[2];
-
-    for (k=0; k<PHY_vars_UE->lte_frame_parms.ofdm_symbol_size*nsymb; k++)
-      dl_ch_estimates_norm_short[k] = ((short *)dl_ch_estimates_norm[2])[k];
-
-
-    for (k=pilot1*2*512; k<pilot1*2*512+2*300-1; k+=(2*dec_f)) {
-      if (dl_ch_estimates_norm_short[k] > (quant_v-1))
-        dl_ch_estimates[k-pilot1*2*512+(2*600)/dec_f] = quant_v-1;
-      else if (dl_ch_estimates_norm_short[k]< (-quant_v))
-        dl_ch_estimates[k-pilot1*2*512+(2*600)/dec_f] = -quant_v;
-      else
-        dl_ch_estimates[k-pilot1*2*512+2*600] = dl_ch_estimates_norm_short[k];
-
-      if (dl_ch_estimates_norm_short[k+1] > (quant_v-1))
-        dl_ch_estimates[k-pilot1*2*512+1+(2*600)/dec_f] = quant_v-1;
-      else if (dl_ch_estimates_norm_short[k+1]< (-quant_v))
-        dl_ch_estimates[k-pilot1*2*512+1+(2*600)/dec_f] = -quant_v;
-      else
-        dl_ch_estimates[k-pilot1*2*512+1+(2*600)/dec_f] = dl_ch_estimates_norm_short[k+1];
-    }
-  }
-
-  if ((PHY_vars_UE->lte_frame_parms.nb_antennas_rx>1) && (PHY_vars_eNB->lte_frame_parms.nb_antennas_tx>1)) {
-    //tx_energy[3]=signal_energy(&(PHY_vars_UE->lte_ue_common_vars.dl_ch_estimates[eNB_id][3][0]),PHY_vars_UE->lte_frame_parms.ofdm_symbol_size*nsymb);
-    printf("tx_energy[%d] = %d\n",3,tx_energy[3]);
-
-    for (k=0; k<PHY_vars_UE->lte_frame_parms.ofdm_symbol_size*nsymb/2; k++)
-      dl_ch_estimates_norm[3][k] = PHY_vars_UE->lte_ue_common_vars.dl_ch_estimates[3][0][k]/tx_energy[3];
-
-    for (k=0; k<PHY_vars_UE->lte_frame_parms.ofdm_symbol_size*nsymb; k++)
-      dl_ch_estimates_norm_short[k] = ((short *)dl_ch_estimates_norm[3])[k];
-
-    for (k=pilot1*2*512; k<pilot1*2*512+2*300-1; k+=(2*dec_f)) {
-      if (dl_ch_estimates_norm_short[k]> (quant_v-1))
-        dl_ch_estimates[k-pilot1*2*512+(2*900)/dec_f] = quant_v-1;
-      else if (dl_ch_estimates_norm_short[k]< (-quant_v))
-        dl_ch_estimates[k-pilot1*2*512+(2*900)/dec_f] = -quant_v;
-      else
-        dl_ch_estimates[k-pilot1*2*512+(2*900)/dec_f] = dl_ch_estimates_norm_short[k];
-
-      if (dl_ch_estimates_norm_short[k+1]> (quant_v-1))
-        dl_ch_estimates[k-pilot1*2*512+1+(2*900)/dec_f] = quant_v-1;
-      else if (dl_ch_estimates_norm_short[k+1]< (-quant_v))
-        dl_ch_estimates[k-pilot1*2*512+1+(2*900)/dec_f] = -quant_v;
-      else
-        dl_ch_estimates[k-pilot1*2*512+1+(2*900)/dec_f] = dl_ch_estimates_norm_short[k+1];
-    }
-  }
-}
-
-void do_quan(PHY_VARS_eNB *PHY_vars_eNB, unsigned int nsymb, uint8_t pilot1, int quant_v, short *drs_ch_estimates, int UE_id)
-{
-  int k;
-  short tx_energy[2];
-  short drs_ch_estimates_norm[2][PHY_vars_eNB->lte_frame_parms.ofdm_symbol_size*nsymb];
-  short drs_ch_estimates_norm_short[PHY_vars_eNB->lte_frame_parms.ofdm_symbol_size*nsymb];
-
-
-  //tx_energy[0] = signal_energy(&(PHY_vars_UE->lte_ue_common_vars.dl_ch_estimates[eNB_id][0][0]),PHY_vars_UE->lte_frame_parms.ofdm_symbol_size*nsymb);
-  for(k=0; k<2; k++)
-    tx_energy[k] = 8;
-
-  for (k=0; k<PHY_vars_eNB->lte_frame_parms.ofdm_symbol_size*nsymb; k++)
-    drs_ch_estimates_norm[0][k] = ((short *)PHY_vars_eNB->lte_eNB_ulsch_vars[0]->drs_ch_estimates[UE_id][0])[k]/tx_energy[0];
-
-  for (k=pilot1*2*300; k<pilot1*2*300+2*300-1; k+=2) {
-    if (drs_ch_estimates_norm[0][k]>(quant_v-1))
-      drs_ch_estimates[k-pilot1*2*300] = quant_v-1;
-    else if ((drs_ch_estimates_norm[0][k]) < (-quant_v))
-      drs_ch_estimates[k-pilot1*2*300] = -quant_v;
-    else
-      drs_ch_estimates[k-pilot1*2*300] = drs_ch_estimates_norm[0][k];
-
-    if (drs_ch_estimates_norm[0][k+1]>(quant_v-1))
-      drs_ch_estimates[k+1-pilot1*2*300] = quant_v-1;
-    else if ((drs_ch_estimates_norm[0][k+1])< (-quant_v))
-      drs_ch_estimates[k+1-pilot1*2*300] = -quant_v;
-    else
-      drs_ch_estimates[k+1-pilot1*2*300] = drs_ch_estimates_norm[0][k+1];
-  }
-
-  /*
-      if (PHY_vars_eNB->lte_frame_parms.nb_antennas_tx>1) {
-        //tx_energy[2]=signal_energy(&(PHY_vars_UE->lte_ue_common_vars.dl_ch_estimates[eNB_id][2][0]),PHY_vars_UE->lte_frame_parms.ofdm_symbol_size*nsymb);
-                    printf("tx_energy[%d] = %d\n",1,tx_energy[1]);
-        for (k=0; k<PHY_vars_UE->lte_frame_parms.ofdm_symbol_size*nsymb; k++)
-          dl_ch_estimates_norm[1][k] = PHY_vars_UE->lte_ue_common_vars.dl_ch_estimates[2][0][k]/tx_energy[1];
-
-        for (k=0;k<PHY_vars_UE->lte_frame_parms.ofdm_symbol_size*nsymb;k++)
-          dl_ch_estimates_norm_short[k] = ((short *)dl_ch_estimates_norm[1])[k];
-
-
-        for (k=pilot1*2*512; k<pilot1*2*512+2*300-1; k+=(2*dec_f)) {
-                          if (dl_ch_estimates_norm_short[k]> (quant_v-1))
-                                  dl_ch_estimates[k-pilot1*2*512+(2*300)/dec_f] = quant_v-1;
-        else if (dl_ch_estimates_norm_short[k]< -quant_v)
-          dl_ch_estimates[k-pilot1*2*512+(2*300)/dec_f] = -quant_v;
-        else
-          dl_ch_estimates[k-pilot1*2*512+(2*300)/dec_f] = dl_ch_estimates_norm_short[k];
-
-        if (dl_ch_estimates_norm_short[k+1]> (quant_v-1))
-                                  dl_ch_estimates[k-pilot1*2*512+1+(2*300)/dec_f] = quant_v-1;
-        else if (dl_ch_estimates_norm_short[k]< -quant_v)
-          dl_ch_estimates[k-pilot1*2*512+1+(2*300)/dec_f] = -quant_v;
-        else
-          dl_ch_estimates[k-pilot1*2*512+1+(2*300)/dec_f] = dl_ch_estimates_norm_short[k+1];
-        }
-      }
-
-                  if (PHY_vars_UE->lte_frame_parms.nb_antennas_rx>1) {
-          //tx_energy[1] = signal_energy(&(PHY_vars_UE->lte_ue_common_vars.dl_ch_estimates[eNB_id][1][0]),PHY_vars_UE->lte_frame_parms.ofdm_symbol_size*nsymb);
-                    printf("tx_energy[%d] = %d\n",2,tx_energy[2]);
-        for (k=0; k<PHY_vars_UE->lte_frame_parms.ofdm_symbol_size*nsymb; k++)
-          dl_ch_estimates_norm[2][k] = PHY_vars_UE->lte_ue_common_vars.dl_ch_estimates[1][0][k]/tx_energy[2];
-
-        for (k=0;k<PHY_vars_UE->lte_frame_parms.ofdm_symbol_size*nsymb;k++)
-          dl_ch_estimates_norm_short[k] = ((short *)dl_ch_estimates_norm[2])[k];
-
-
-        for (k=pilot1*2*512; k<pilot1*2*512+2*300-1; k+=(2*dec_f)) {
-                          if (dl_ch_estimates_norm_short[k] > (quant_v-1))
-                                  dl_ch_estimates[k-pilot1*2*512+(2*600)/dec_f] = quant_v-1;
-        else if (dl_ch_estimates_norm_short[k]< (-quant_v))
-          dl_ch_estimates[k-pilot1*2*512+(2*600)/dec_f] = -quant_v;
-        else
-          dl_ch_estimates[k-pilot1*2*512+2*600] = dl_ch_estimates_norm_short[k];
-
-        if (dl_ch_estimates_norm_short[k+1] > (quant_v-1))
-                                  dl_ch_estimates[k-pilot1*2*512+1+(2*600)/dec_f] = quant_v-1;
-        else if (dl_ch_estimates_norm_short[k+1]< (-quant_v))
-          dl_ch_estimates[k-pilot1*2*512+1+(2*600)/dec_f] = -quant_v;
-        else
-          dl_ch_estimates[k-pilot1*2*512+1+(2*600)/dec_f] = dl_ch_estimates_norm_short[k+1];
-        }
-      }
-
-      */
-
-  //write_output("dll1.m","dl1", drs_ch_estimates_norm[0],PHY_vars_eNB->lte_frame_parms.ofdm_symbol_size*nsymb,1,0);
-  //write_output("dll2.m","dl2", drs_ch_estimates,PHY_vars_eNB->lte_frame_parms.ofdm_symbol_size*nsymb,1,1);
-  //exit(-1);
-}
-
-
-//end Modif channel quantization at UE
-
-//calibration algo
-void do_calibration(short K_dl_ch_estimates[25][2][600], short K_drs_ch_estimates[25][2][600], double PeNb_factor[2][600], int ofdm_syn, int n_K)
-{
-
-  //Calib Algor in eNb
-  int i=0, s_c=0;
-  double ar=0,ai=0,br=0,bi=0,cr=0,ci=0,dr=0,di=0;
-  int aa;
-  int length_H_G = n_K*4;
-
-  short H[length_H_G];
-  short G[length_H_G];
-  bzero(H,length_H_G);
-  bzero(G,length_H_G);
-
-  //printf("ofdm_sym = %d\n",); exit(-1);
-
-  //printf("i = %d \n",K_dl_ch_estimates[0][0][0]);
-  //exit(-1);
-
-  for(s_c=0; s_c<600; s_c+=2) {
-    for(aa=0; aa<1; aa++) {
-      //system for 1 ant at primary, change to perform onother prim ant
-      for(i=0; i<n_K; i++) {
-        //printf("i = %d\n",i);
-        G[(i<<2)+0] = K_dl_ch_estimates[i][aa][s_c+0];
-        G[(i<<2)+1] = K_dl_ch_estimates[i][aa][s_c+1];
-        H[(i<<2)+0] = K_drs_ch_estimates[i][aa][s_c+0];
-        H[(i<<2)+1] = K_drs_ch_estimates[i][aa][s_c+1];
-      }
-
-      for(i=0; i<n_K; i++) {
-        //LEN == K_est
-        // [A B]^H*[A B]
-        ar +=  H[(i<<2)+0]*H[(i<<2)+0] + H[(i<<2)+1]*H[(i<<2)+1]; //(a-ib)(a+ib)=(a^2+b^2)
-        // ai += -H[(i<<2)+0]*H[(i<<2)+1] + H[(i<<2)+1]*H[(i<<2)+0];
-        br +=  H[(i<<2)+0]*G[(i<<2)+0] + H[(i<<2)+1]*G[(i<<2)+1];
-        bi += -H[(i<<2)+0]*G[(i<<2)+1] + H[(i<<2)+1]*G[(i<<2)+0];
-        //cr +=  G[(i<<2)+0]*H[(i<<2)+0] + G[(i<<2)+1]*H[(i<<2)+1];
-        //ci += -G[(i<<2)+0]*H[(i<<2)+1] + G[(i<<2)+1]*H[(i<<2)+0];
-        dr +=  G[(i<<2)+0]*G[(i<<2)+0] + G[(i<<2)+1]*G[(i<<2)+1];
-        //di += -G[(i<<2)+0]*G[(i<<2)+1] + G[(i<<2)+1]*G[(i<<2)+0];
-        //if((s_c>>1)==0 || (s_c>>1)==1 || (s_c>>1)==2 || (s_c>>1)==3) printf("\n ar=%d, ai=%d, br=%d, bi=%d, dr=%d, di=%d\n", ar,ai,br,bi,dr,di);
-      }
-
-      ar = (double)(ar/100);
-      //ai = 0;
-      br = (double)(br/100);
-      bi = (double)(bi/100);
-      //cr = (double)(cr/100);
-      //ci = (double)(ci/100);
-      dr = (double)(dr/100);
-      //di = 0;
-
-
-      if( (ar-dr+iSqrt((ar-dr)*(ar-dr)+((br*br+bi*bi)*4)))==0) {
-        PeNb_factor[aa][s_c] = 0;
-        PeNb_factor[aa][s_c+1] = 0;
-      } else {
-        //printf("Dif de 0\n");
-        PeNb_factor[aa][s_c]   = (2*br/(ar-dr+iSqrt((ar-dr)*(ar-dr)+((br*br+bi*bi)*4))));
-        PeNb_factor[aa][s_c+1] = (-2*bi/(ar-dr+iSqrt((ar-dr)*(ar-dr)+((br*br+bi*bi)*4))));
-      }
-
-      ar=0;
-      ai=0;
-      br=0;
-      bi=0;
-      cr=0;
-      ci=0;
-      dr=0;
-      di=0;
-      //if ((s_c>>1) > 4) exit(-1);
-    }
-  }
-
-  msg("[CAL PROC]P_eNb DETERMINED... \n");
-}
-
-
-//DCI2_5MHz_2A_M10PRB_TDD_t DLSCH_alloc_pdu2_2A[2];
-DCI2_5MHz_2D_M10PRB_TDD_t DLSCH_alloc_pdu2_2D[2];
-
-
-#define UL_RB_ALLOC 0x1ff;
-#define CCCH_RB_ALLOC computeRIV(PHY_vars_eNB->lte_frame_parms.N_RB_UL,0,2)
-//#define DLSCH_RB_ALLOC 0x1fbf // igore DC component,RB13
-#define DLSCH_RB_ALLOC 0x1fff // all 25 RBs
-//#define DLSCH_RB_ALLOC 0x0001
-
-int main(int argc, char **argv)
-{
-
-  char c;
-  int k,i,j,b,aa,aarx,Msc_RS_idx;
-
-  int s,Kr,Kr_bytes;
-
-  double sigma2, sigma2_dB=10,SNR,snr0=-2.0,snr1,rate;
-  //modif start UL
-  unsigned int coded_bits_per_codeword_UE;
-  double sigma2_UE, sigma2_UE_dB=10, SNRmeas, rate_UE;
-  uint8_t control_only_flag = 0;
-  uint8_t cooperation_flag = 0;
-  int **txdata_UE;
-  channel_desc_t *UE2eNB;
-  uint8_t cyclic_shift = 0;
-  uint8_t beta_ACK=0,beta_RI=0,beta_CQI=2;
-  uint8_t srs_flag = 0;
-  char fname[20],vname[20];
-  //modif end UL
-  double snr_step=1, snr_int=30;
-  //int **txdataF, **txdata;
-  int **txdata;
-#ifdef IFFT_FPGA
-  int **txdataF2;
-  //modif start UL
-  int **txdataF2_UE;
-  //modif end UL
-  int ind;
-#endif
-  LTE_DL_FRAME_PARMS *frame_parms;
-  double **s_re,**s_im,**r_re,**r_im;
-  //modif start UL
-  int llb;
-  double **s_re_UE, **s_im_UE, **r_re_UE, **r_im_UE;
-  //modif end UL
-  double forgetting_factor=1.0; //in [0,1] 0 means a new channel every time, 1 means keep the same channel
-  //double hold_channel=0; //use hold_channel=1 instead of forgetting_factor=1 (more efficient)
-  double iqim=0.0;
-
-  uint8_t extended_prefix_flag=0,transmission_mode=1,n_tx=1,n_rx=1;
-  uint16_t Nid_cell=0;
-
-  int eNB_id = 0, eNB_id_i = NUMBER_OF_eNB_MAX;
-  //modif start UL
-  int UE_id = 0;
-  unsigned char mcs_UE;
-  int dec_f=1;
-  short quant=8, quant_v;
-  //modif end UL
-  unsigned char mcs_eNB,dual_stream_UE = 0,awgn_flag=0,round_eNB,round_UE,dci_flag=0;
-  unsigned char i_mod = 2;
-  unsigned short NB_RB=conv_nprb(0,DLSCH_RB_ALLOC);
-  unsigned char Ns,l,m;
-  uint16_t tdd_config=3;
-  uint16_t n_rnti=0x1234;
-
-  int n_users = 1;
-
-  int decalibration = 1, phase_offset = 1;
-
-  double s_time = 1/7.68e6;
-  double delta_offset_UL = 90;
-  double delta_offset_DL = 100;
-  double phase_inc_UL = 2*M_PI*delta_offset_UL*s_time;
-  double phase_inc_DL = 2*M_PI*delta_offset_DL*s_time;
-
-  double phase_in_UL = 0;//phase_inc_UL;
-  double phase_in_DL = 0;//phase_inc_DL;
-
-  SCM_t channel_model=Rayleigh1_corr;
-
-  unsigned char *input_buffer[2];
-  unsigned short input_buffer_length;
-  unsigned int ret_eNB,ret_UE;
-  unsigned int coded_bits_per_codeword,nsymb,dci_cnt,tbs;
-
-  unsigned int tx_lev,tx_lev_dB,trials,errs_eNB[4]= {0,0,0,0},round_trials_UE[4]= {0,0,0,0},round_trials_eNB[4]= {0,0,0,0},dci_errors=0,dlsch_active=0,num_layers;
-  //modif start UL
-  unsigned int tx_lev_UE,tx_lev_UE_dB,errs_UE[4]= {0,0,0,0};
-  //unsigned char *input_buffer_UE; //b
-  char *input_buffer_UE; //b
-  unsigned short input_buffer_length_UE;
-  //modif end UL
-  int re_allocated;
-  FILE *bler_fd;
-  char bler_fname[256];
-  FILE *tikz_fd;
-  char tikz_fname[256];
-
-  FILE *input_trch_fd;
-  unsigned char input_trch_file=0;
-  FILE *input_fd=NULL;
-  unsigned char input_file=0;
-  char input_val_str[50],input_val_str2[50];
-
-  char input_trch_val[16];
-  double pilot_sinr, abs_channel;
-
-  //  unsigned char pbch_pdu[6];
-
-  DCI_ALLOC_t dci_alloc[8],dci_alloc_rx[8];
-  int num_common_dci=0,num_ue_spec_dci=0,num_dci=0;
-
-  //  FILE *rx_frame_file;
-
-  int n_frames;
-  int n_ch_rlz = 1;
-  channel_desc_t *eNB2UE;
-  double snr;
-  uint8_t num_pdcch_symbols=3,num_pdcch_symbols_2=0;
-  uint8_t pilot1,pilot2,pilot3;
-  uint8_t rx_sample_offset = 0;
-  //char stats_buffer[4096];
-  //int len;
-  uint8_t num_rounds = 1,fix_rounds=0;
-  uint8_t subframe=6;
-  //modif start UL
-  int subframe_UL=2;
-  //modif end UL
-  int u;
-  int abstx=0;
-  int iii;
-  FILE *csv_fd;
-  char csv_fname[20];
-  int ch_realization;
-  int pmi_feedback=0;
-  // void *data;
-  // int ii;
-  // int bler;
-  double blerr,uncoded_ber,avg_ber;
-  short *uncoded_ber_bit;
-  uint8_t N_RB_DL=25,osf=1;
-  int16_t amp;
-  //modif start UL
-  unsigned char harq_pid;
-  FILE *trch_out_fd=NULL;
-  unsigned char nb_rb_UE=25, first_rb=0, bundling_flag=1;
-  //modif end UL
-#ifdef XFORMS
-  FD_lte_scope *form;
-  char title[255];
-#endif
-
-  // Calibration parameters
-  int P_eNb_active=0;
-  double PeNb_factor[2][600];
-
-  signal(SIGSEGV, handler);
-
-  // default parameters
-  mcs_eNB = 0;
-  //modif start UL
-  mcs_UE = 4;
-  //modif end UL
-  n_frames = 1000;
-  snr0 = 0;
-  num_layers = 1;
-
-  while ((c = getopt (argc, argv, "hadpm:n:o:s:f:t:c:g:r:F:x:y:z:M:N:I:i:R:S:C:T:b:u:w:X:q:D:")) != -1) {
-    switch (c) {
-    case 'a':
-      awgn_flag = 1;
-      break;
-
-    case 'b':
-      tdd_config=atoi(optarg);
-      break;
-
-    case 'd':
-      dci_flag = 1;
-      break;
-
-    case 'm':
-      mcs_eNB = atoi(optarg);
-      break;
-
-      /*case 'C':
-      beta_CQI = atoi(optarg);
-      if ((beta_CQI>15)||(beta_CQI<2)) {
-      printf("beta_cqi must be in (2..15)\n");
-      exit(-1);
-      }
-       break;
-
-      case 'R':
-      beta_RI = atoi(optarg);
-      if ((beta_RI>15)||(beta_RI<2)) {
-      printf("beta_ri must be in (0..13)\n");
-      exit(-1);
-      }
-       break;*/
-      //modif start UL
-    case 'w':
-      mcs_UE = atoi(optarg);
-      break;
-
-    case 'r':
-      nb_rb_UE = atoi(optarg);
-      break;
-
-    case 'f':
-      first_rb = atoi(optarg);
-      break;
-
-    case 'q':
-      quant = atoi(optarg);
-      break;
-
-    case 'D':
-      dec_f = atoi(optarg);
-      break;
-
-      //modif end UL
-    case 'n':
-      n_frames = atoi(optarg);
-      break;
-
-    case 'C':
-      Nid_cell = atoi(optarg);
-      break;
-
-    case 'o':
-      rx_sample_offset = atoi(optarg);
-      break;
-
-    case 'F':
-      forgetting_factor = atof(optarg);
-      break;
-
-    case 's':
-      snr0 = atoi(optarg);
-      break;
-
-    case 't':
-      //Td= atof(optarg);
-      printf("Please use the -G option to select the channel model\n");
-      exit(-1);
-      break;
-
-    case 'X':
-      snr_step= atof(optarg);
-      break;
-
-    case 'M':
-      abstx= atof(optarg);
-      break;
-
-    case 'N':
-      n_ch_rlz= atof(optarg);
-      break;
-
-    case 'p':
-      extended_prefix_flag=1;
-      break;
-
-    case 'c':
-      num_pdcch_symbols=atoi(optarg);
-      break;
-
-    case 'g':
-      switch((char)*optarg) {
-      case 'A':
-        channel_model=SCM_A;
-        break;
-
-      case 'B':
-        channel_model=SCM_B;
-        break;
-
-      case 'C':
-        channel_model=SCM_C;
-        break;
-
-      case 'D':
-        channel_model=SCM_D;
-        break;
-
-      case 'E':
-        channel_model=EPA;
-        break;
-
-      case 'F':
-        channel_model=EVA;
-        break;
-
-      case 'G':
-        channel_model=ETU;
-        break;
-
-      case 'H':
-        channel_model=Rayleigh8;
-        break;
-
-      case 'I':
-        channel_model=Rayleigh1;
-        break;
-
-      case 'J':
-        channel_model=Rayleigh1_corr;
-        break;
-
-      case 'K':
-        channel_model=Rayleigh1_anticorr;
-        break;
-
-      case 'L':
-        channel_model=Rice8;
-        break;
-
-      case 'M':
-        channel_model=Rice1;
-        break;
-
-      default:
-        msg("Unsupported channel model!\n");
-        exit(-1);
-      }
-
-      break;
-
-    case 'x':
-      transmission_mode=atoi(optarg);
-
-      if ((transmission_mode!=1) &&
-          (transmission_mode!=2) &&
-          (transmission_mode!=5) &&
-          (transmission_mode!=6)) {
-        msg("Unsupported transmission mode %d\n",transmission_mode);
-        exit(-1);
-      }
-
-      break;
-
-    case 'y':
-      n_tx=atoi(optarg);
-
-      if ((n_tx==0) || (n_tx>2)) {
-        msg("Unsupported number of tx antennas %d\n",n_tx);
-        exit(-1);
-      }
-
-      break;
-
-    case 'z':
-      n_rx=atoi(optarg);
-
-      if ((n_rx==0) || (n_rx>2)) {
-        msg("Unsupported number of rx antennas %d\n",n_rx);
-        exit(-1);
-      }
-
-      break;
-
-    case 'I':
-      input_trch_fd = fopen(optarg,"r");
-      input_trch_file=1;
-      break;
-
-    case 'i':
-      input_fd = fopen(optarg,"r");
-      input_file=1;
-      dci_flag = 1;
-      break;
-
-    case 'R':
-      num_rounds=atoi(optarg);
-      fix_rounds=1;
-      break;
-
-    case 'S':
-      subframe=atoi(optarg);
-      break;
-
-    case 'T':
-      n_rnti=atoi(optarg);
-      break;
-
-    case 'u':
-      dual_stream_UE=atoi(optarg);
-
-      if ((n_tx!=2) || (transmission_mode!=5)) {
-        msg("Unsupported nb of decoded users: %d user(s), %d user(s) to decode\n", n_tx, dual_stream_UE);
-        exit(-1);
-      }
-
-      break;
-
-    case 'h':
-    default:
-      printf("%s -h(elp) -a(wgn on) -d(ci decoding on) -p(extended prefix on) -m mcs_eNB -n n_frames -s snr0 -t Delayspread -x transmission mode (1,2,5,6) -y TXant -z RXant -I trch_file\n",argv[0]);
-      printf("-h This message\n");
-      printf("-a Use AWGN channel and not multipath\n");
-      printf("-c Number of PDCCH symbols\n");
-      printf("-m MCS_eNB\n");
-      printf("-w MCS_UE\n");
-      printf("-q quantization parameters\n");
-      printf("-D DL decimacion factor at UE\n");
-      printf("-r nb_rb_UE Number of ressource blocs in the UL\n");
-      printf("-f First ressource bloc in the UL\n");
-      printf("-d Transmit the DCI and compute its error statistics and the overall throughput\n");
-      printf("-p Use extended prefix mode\n");
-      printf("-n Number of frames to simulate\n");
-      printf("-o Sample offset for receiver\n");
-      printf("-s Starting SNR, runs from SNR to SNR+%.1fdB in steps of %.1fdB. If n_frames is 1 then just SNR is simulated and MATLAB/OCTAVE output is generated\n", snr_int, snr_step);
-      printf("-X step size of SNR, default value is 1.\n");
-      printf("-t Delay spread for multipath channel\n");
-      //printf("-r Ricean factor (dB, 0 dB = Rayleigh, 100 dB = almost AWGN)\n");
-      printf("-g [A:M] Use 3GPP 25.814 SCM-A/B/C/D('A','B','C','D') or 36-101 EPA('E'), EVA ('F'),ETU('G') models (ignores delay spread and Ricean factor), Rayghleigh8 ('H'), Rayleigh1('I'), Rayleigh1_corr('J'), Rayleigh1_anticorr ('K'), Rice8('L'), Rice1('M')\n");
-      printf("-F forgetting factor (0 new channel every trial, 1 channel constant\n");
-      printf("-x Transmission mode (1,2,6 for the moment)\n");
-      printf("-y Number of TX antennas used in eNB\n");
-      printf("-z Number of RX antennas used in UE\n");
-      printf("-R Number of HARQ rounds (fixed)\n");
-      printf("-M Determines whether the Absraction flag is on or Off. 1-->On and 0-->Off. Default status is Off. \n");
-      printf("-N Determines the number of Channel Realizations in Absraction mode. Default value is 1. \n");
-      printf("-I Input filename for TrCH data (binary)\n");
-      printf("-u Determines if the 2 streams at the UE are decoded or not. 0-->U2 is interference only and 1-->U2 is detected\n");
-      exit(1);
-      break;
-    }
-  }
-
-#ifdef XFORMS
-  fl_initialize (&argc, argv, NULL, 0, 0);
-  form = create_form_lte_scope();
-  sprintf (title, "LTE DLSIM SCOPE");
-  fl_show_form (form->lte_scope, FL_PLACE_HOTSPOT, FL_FULLBORDER, title);
-#endif
-
-  if (transmission_mode==5) {
-    n_users = 2;
-    printf("dual_stream_UE=%d\n", dual_stream_UE);
-  }
-
-  lte_param_init(n_tx,n_rx,transmission_mode,extended_prefix_flag,Nid_cell,tdd_config,N_RB_DL,osf);
-
-
-  printf("Setting mcs_eNB = %d\n",mcs_eNB);
-  //modif start UL
-  printf("Setting mcs_UE = %d\n",mcs_UE);
-  quant_v = (2<<(quant-1))/2; //b quantization bit
-  //printf("quant %d\n",quant_v);
-  //exit(-1);
-  //modif end UL
-  printf("NPRB = %d\n",NB_RB);
-  printf("n_frames = %d\n",n_frames);
-  printf("Transmission mode %d with %dx%d antenna configuration, Extended Prefix %d\n",transmission_mode,n_tx,n_rx,extended_prefix_flag);
-
-  snr1 = snr0+snr_int;
-  printf("SNR0 %f, SNR1 %f\n",snr0,snr1);
-
-  frame_parms = &PHY_vars_eNB->lte_frame_parms;
-
-#ifdef IFFT_FPGA
-  txdata    = (int **)malloc16(2*sizeof(int*));
-  txdata[0] = (int *)malloc16(FRAME_LENGTH_BYTES);
-  txdata[1] = (int *)malloc16(FRAME_LENGTH_BYTES);
-
-  bzero(txdata[0],FRAME_LENGTH_BYTES);
-  bzero(txdata[1],FRAME_LENGTH_BYTES);
-
-  txdataF2    = (int **)malloc16(2*sizeof(int*));
-  txdataF2[0] = (int *)malloc16(FRAME_LENGTH_BYTES_NO_PREFIX);
-  txdataF2[1] = (int *)malloc16(FRAME_LENGTH_BYTES_NO_PREFIX);
-
-  bzero(txdataF2[0],FRAME_LENGTH_BYTES_NO_PREFIX);
-  bzero(txdataF2[1],FRAME_LENGTH_BYTES_NO_PREFIX);
-
-  //modif start UL
-  txdata_UE    = (int **)malloc16(2*sizeof(int*));
-  txdata_UE[0] = (int *)malloc16(FRAME_LENGTH_BYTES);
-  txdata_UE[1] = (int *)malloc16(FRAME_LENGTH_BYTES);
-
-  bzero(txdata_UE[0],FRAME_LENGTH_BYTES);
-  bzero(txdata_UE[1],FRAME_LENGTH_BYTES);
-
-  txdataF2_UE    = (int **)malloc16(2*sizeof(int*));
-  txdataF2_UE[0] = (int *)malloc16(FRAME_LENGTH_BYTES_NO_PREFIX);
-  txdataF2_UE[1] = (int *)malloc16(FRAME_LENGTH_BYTES_NO_PREFIX);
-
-  bzero(txdataF2_UE[0],FRAME_LENGTH_BYTES_NO_PREFIX);
-  bzero(txdataF2_UE[1],FRAME_LENGTH_BYTES_NO_PREFIX);
-  //modif end UL
-#else
-  txdata = PHY_vars_eNB->lte_eNB_common_vars.txdata[eNB_id];
-  //modif start UL
-  txdata_UE = PHY_vars_UE->lte_ue_common_vars.txdata;
-  //modif end UL
-#endif
-
-
-  s_re = malloc(2*sizeof(double*));
-  s_im = malloc(2*sizeof(double*));
-  r_re = malloc(2*sizeof(double*));
-  r_im = malloc(2*sizeof(double*));
-  nsymb = (PHY_vars_eNB->lte_frame_parms.Ncp == 0) ? 14 : 12;
-  //modif start UL
-  //int dl_ch_estimates_norm[4][PHY_vars_UE->lte_frame_parms.ofdm_symbol_size*nsymb/2];
-  int n_K=15;
-  int   dl_ch_estimates_length=(2*300*4)/dec_f;
-  short dl_ch_estimates[dl_ch_estimates_length];
-  bzero(dl_ch_estimates,(dl_ch_estimates_length));
-
-  short K_dl_ch_estimates[n_K][2][600];
-  short K_drs_ch_estimates[n_K][2][600];
-
-  double s_re_out[2*nsymb*OFDM_SYMBOL_SIZE_COMPLEX_SAMPLES], s_im_out[2*nsymb*OFDM_SYMBOL_SIZE_COMPLEX_SAMPLES], r_re_out[2*nsymb*OFDM_SYMBOL_SIZE_COMPLEX_SAMPLES],
-         r_im_out[2*nsymb*OFDM_SYMBOL_SIZE_COMPLEX_SAMPLES];
-
-  for(aa=0; aa<2; aa++) {
-    for(k=0; k<n_K; k++) {
-      bzero(K_dl_ch_estimates[k][aa],600);
-      bzero(K_drs_ch_estimates[k][aa],600);
-    }
-  }
-
-  int drs_ch_estimates_length=(2*300*4)/dec_f;
-  short drs_ch_estimates[drs_ch_estimates_length];
-  bzero(drs_ch_estimates,(drs_ch_estimates_length));
-
-
-  s_re_UE = malloc(2*sizeof(double*));
-  s_im_UE = malloc(2*sizeof(double*));
-  r_re_UE = malloc(2*sizeof(double*));
-  r_im_UE = malloc(2*sizeof(double*));
-
-  coded_bits_per_codeword_UE = nb_rb_UE * (12 * get_Qm(mcs_UE)) * nsymb;
-  rate_UE = (double)dlsch_tbs25[get_I_TBS(mcs_UE)][nb_rb_UE-1]/(coded_bits_per_codeword_UE);
-  //modif end UL
-
-  printf("Channel Model=%d\n",channel_model);
-  printf("SCM-A=%d, SCM-B=%d, SCM-C=%d, SCM-D=%d, EPA=%d, EVA=%d, ETU=%d, Rayleigh8=%d, Rayleigh1=%d, Rayleigh1_corr=%d, Rayleigh1_anticorr=%d, Rice1=%d, Rice8=%d\n",
-         SCM_A, SCM_B, SCM_C, SCM_D, EPA, EVA, ETU, Rayleigh8, Rayleigh1, Rayleigh1_corr, Rayleigh1_anticorr, Rice1, Rice8);
-  sprintf(bler_fname,"second_bler_tx%d_mcs%d_chan%d.csv",transmission_mode,mcs_eNB,channel_model);
-  bler_fd = fopen(bler_fname,"w");
-  fprintf(bler_fd,"SNR; MCS; TBS; rate; err0; trials0; err1; trials1; err2; trials2; err3; trials3; dci_err\n");
-
-  if(abstx) {
-    // CSV file
-    sprintf(csv_fname,"data_out%d.m",mcs_eNB);
-    csv_fd = fopen(csv_fname,"w");
-    fprintf(csv_fd,"data_all%d=[",mcs_eNB);
-  }
-
-  sprintf(tikz_fname, "second_bler_tx%d_u2=%d_mcs%d_chan%d_nsimus%d",transmission_mode,dual_stream_UE,mcs_eNB,channel_model,n_frames);
-  tikz_fd = fopen(tikz_fname,"w");
-
-  switch (mcs_eNB) {
-  case 0:
-    fprintf(tikz_fd,"\\addplot[color=blue, mark=star] plot coordinates {");
-    break;
-
-  case 1:
-    fprintf(tikz_fd,"\\addplot[color=red, mark=star] plot coordinates {");
-    break;
-
-  case 2:
-    fprintf(tikz_fd,"\\addplot[color=green, mark=star] plot coordinates {");
-    break;
-
-  case 3:
-    fprintf(tikz_fd,"\\addplot[color=yellow, mark=star] plot coordinates {");
-    break;
-
-  case 4:
-    fprintf(tikz_fd,"\\addplot[color=black, mark=star] plot coordinates {");
-    break;
-
-  case 5:
-    fprintf(tikz_fd,"\\addplot[color=blue, mark=o] plot coordinates {");
-    break;
-
-  case 6:
-    fprintf(tikz_fd,"\\addplot[color=red, mark=o] plot coordinates {");
-    break;
-
-  case 7:
-    fprintf(tikz_fd,"\\addplot[color=green, mark=o] plot coordinates {");
-    break;
-
-  case 8:
-    fprintf(tikz_fd,"\\addplot[color=yellow, mark=o] plot coordinates {");
-    break;
-
-  case 9:
-    fprintf(tikz_fd,"\\addplot[color=black, mark=o] plot coordinates {");
-    break;
-  }
-
-  for (i=0; i<2; i++) {
-    s_re[i] = malloc(FRAME_LENGTH_COMPLEX_SAMPLES*sizeof(double));
-    s_im[i] = malloc(FRAME_LENGTH_COMPLEX_SAMPLES*sizeof(double));
-    r_re[i] = malloc(FRAME_LENGTH_COMPLEX_SAMPLES*sizeof(double));
-    r_im[i] = malloc(FRAME_LENGTH_COMPLEX_SAMPLES*sizeof(double));
-    //modif start UL
-    s_re_UE[i] = malloc(FRAME_LENGTH_COMPLEX_SAMPLES*sizeof(double));
-    s_im_UE[i] = malloc(FRAME_LENGTH_COMPLEX_SAMPLES*sizeof(double));
-    r_re_UE[i] = malloc(FRAME_LENGTH_COMPLEX_SAMPLES*sizeof(double));
-    r_im_UE[i] = malloc(FRAME_LENGTH_COMPLEX_SAMPLES*sizeof(double));
-    //modif end UL
-
-  }
-
-
-  //PHY_vars_UE->lte_ue_pdcch_vars[0]->crnti = n_rnti;
-  PHY_vars_UE->lte_ue_pdcch_vars[0]->crnti = 14;
-
-  //modif start UL
-  UL_alloc_pdu.type    = 0;
-  UL_alloc_pdu.rballoc = computeRIV(PHY_vars_eNB->lte_frame_parms.N_RB_UL,first_rb,nb_rb_UE);// 12 RBs from position 8
-  printf("rballoc %d (dci %x)\n",UL_alloc_pdu.rballoc,*(uint32_t *)&UL_alloc_pdu);
-  UL_alloc_pdu.mcs     = mcs_UE;
-  UL_alloc_pdu.ndi     = 1;
-  UL_alloc_pdu.TPC     = 0;
-  UL_alloc_pdu.cqi_req = 0;
-  UL_alloc_pdu.cshift  = 0;
-  UL_alloc_pdu.dai     = 1;
-
-  PHY_vars_UE->PHY_measurements.rank[0] = 0;
-  PHY_vars_UE->transmission_mode[0] = transmission_mode;
-  PHY_vars_UE->pucch_config_dedicated[0].tdd_AckNackFeedbackMode = bundling_flag == 1 ? bundling : multiplexing;
-  PHY_vars_eNB->transmission_mode[0] = transmission_mode;
-  PHY_vars_eNB->pucch_config_dedicated[0].tdd_AckNackFeedbackMode = bundling_flag == 1 ? bundling : multiplexing;
-  PHY_vars_UE->lte_frame_parms.pusch_config_common.ul_ReferenceSignalsPUSCH.groupHoppingEnabled = 1;
-  PHY_vars_eNB->lte_frame_parms.pusch_config_common.ul_ReferenceSignalsPUSCH.groupHoppingEnabled = 1;
-  PHY_vars_UE->lte_frame_parms.pusch_config_common.ul_ReferenceSignalsPUSCH.sequenceHoppingEnabled = 0;
-  PHY_vars_eNB->lte_frame_parms.pusch_config_common.ul_ReferenceSignalsPUSCH.sequenceHoppingEnabled = 0;
-  PHY_vars_UE->lte_frame_parms.pusch_config_common.ul_ReferenceSignalsPUSCH.groupAssignmentPUSCH = 0;
-  PHY_vars_eNB->lte_frame_parms.pusch_config_common.ul_ReferenceSignalsPUSCH.groupAssignmentPUSCH = 0;
-  msg("Init UL hopping UE\n");
-  init_ul_hopping(&PHY_vars_UE->lte_frame_parms);
-  msg("Init UL hopping eNB\n");
-  init_ul_hopping(&PHY_vars_eNB->lte_frame_parms);
-
-  if (n_frames==1) {
-    for (b=0; b<33; b++) {
-      printf("dftsizes[%d] %d\n",b,dftsizes[b]);
-
-      if ((nb_rb_UE*12)==dftsizes[b])
-        Msc_RS_idx = b;
-    }
-
-    printf("nb_rb_UE %d => Msc_RS_idx %d\n",nb_rb_UE,Msc_RS_idx);
-
-    for (u=0; u<30; u++) {
-      printf("Writing u %d\n",u);
-      sprintf(fname,"ul_zc%d_%d.m",nb_rb_UE,u);
-      sprintf(vname,"ulzc%d_%d",nb_rb_UE,u);
-      write_output(fname,vname,(void*)&ul_ref_sigs[u][0][Msc_RS_idx][0],2*nb_rb_UE*12,1,1);
-    }
-  }
-
-  //  printf("RIV %d\n",UL_alloc_pdu.rballoc);
-  //modif end UL
-
-  // Fill in UL_alloc
-  CCCH_alloc_pdu.type               = 0;
-  CCCH_alloc_pdu.vrb_type           = 0;
-  CCCH_alloc_pdu.rballoc            = CCCH_RB_ALLOC;
-  CCCH_alloc_pdu.ndi      = 1;
-  CCCH_alloc_pdu.mcs      = 1;
-  CCCH_alloc_pdu.harq_pid = 0;
-  //modif start UL
-  DLSCH_alloc_pdu2.rah              = 0;
-  DLSCH_alloc_pdu2.rballoc          = DLSCH_RB_ALLOC;
-  DLSCH_alloc_pdu2.TPC              = 0;
-  DLSCH_alloc_pdu2.dai              = 0;
-  DLSCH_alloc_pdu2.harq_pid         = 0;
-  DLSCH_alloc_pdu2.tb_swap          = 0;
-  DLSCH_alloc_pdu2.mcs1             = mcs_UE;//to check
-  DLSCH_alloc_pdu2.ndi1             = 1;
-  DLSCH_alloc_pdu2.rv1              = 0;
-  // Forget second codeword
-  DLSCH_alloc_pdu2.tpmi             = 5 ;  // precoding
-  //modif end UL
-
-  DLSCH_alloc_pdu2_2D[0].rah              = 0;
-  DLSCH_alloc_pdu2_2D[0].rballoc          = DLSCH_RB_ALLOC;
-  DLSCH_alloc_pdu2_2D[0].TPC              = 0;
-  DLSCH_alloc_pdu2_2D[0].dai              = 0;
-  DLSCH_alloc_pdu2_2D[0].harq_pid         = 0;
-  DLSCH_alloc_pdu2_2D[0].tb_swap          = 0;
-  DLSCH_alloc_pdu2_2D[0].mcs1             = mcs_eNB;
-  DLSCH_alloc_pdu2_2D[0].ndi1             = 1;
-  DLSCH_alloc_pdu2_2D[0].rv1              = 0;
-  // Forget second codeword
-  DLSCH_alloc_pdu2_2D[0].tpmi             = (transmission_mode>=5 ? 5 : 0);  // precoding
-  DLSCH_alloc_pdu2_2D[0].dl_power_off     = (transmission_mode==5 ? 0 : 1);
-
-  DLSCH_alloc_pdu2_2D[1].rah              = 0;
-  DLSCH_alloc_pdu2_2D[1].rballoc          = DLSCH_RB_ALLOC;
-  DLSCH_alloc_pdu2_2D[1].TPC              = 0;
-  DLSCH_alloc_pdu2_2D[1].dai              = 0;
-  DLSCH_alloc_pdu2_2D[1].harq_pid         = 0;
-  DLSCH_alloc_pdu2_2D[1].tb_swap          = 0;
-  DLSCH_alloc_pdu2_2D[1].mcs1             = mcs_eNB;
-  DLSCH_alloc_pdu2_2D[1].ndi1             = 1;
-  DLSCH_alloc_pdu2_2D[1].rv1              = 0;
-  // Forget second codeword
-  DLSCH_alloc_pdu2_2D[1].tpmi             = (transmission_mode>=5 ? 5 : 0) ;  // precoding
-  DLSCH_alloc_pdu2_2D[1].dl_power_off     = (transmission_mode==5 ? 0 : 1);
-
-  // Create transport channel structures for SI pdus
-  PHY_vars_eNB->dlsch_eNB_SI   = new_eNB_dlsch(1,1,0);
-  PHY_vars_UE->dlsch_ue_SI[0]  = new_ue_dlsch(1,1,0);
-  PHY_vars_eNB->dlsch_eNB_SI->rnti  = SI_RNTI;
-  PHY_vars_UE->dlsch_ue_SI[0]->rnti = SI_RNTI;
-
-  eNB2UE = new_channel_desc_scm(PHY_vars_eNB->lte_frame_parms.nb_antennas_tx,
-                                PHY_vars_UE->lte_frame_parms.nb_antennas_rx,
-                                channel_model,
-                                BW,
-                                forgetting_factor,
-                                rx_sample_offset,
-                                0);
-
-  //modif start UL
-  PHY_vars_UE->lte_frame_parms.soundingrs_ul_config_common.srs_BandwidthConfig = 2;
-  PHY_vars_UE->lte_frame_parms.soundingrs_ul_config_common.srs_SubframeConfig = 7;
-  PHY_vars_UE->soundingrs_ul_config_dedicated[eNB_id].srs_Bandwidth = 0;
-  PHY_vars_UE->soundingrs_ul_config_dedicated[eNB_id].transmissionComb = 0;
-  PHY_vars_UE->soundingrs_ul_config_dedicated[eNB_id].freqDomainPosition = 0;
-
-  PHY_vars_eNB->lte_frame_parms.soundingrs_ul_config_common.srs_BandwidthConfig = 2;
-  PHY_vars_eNB->lte_frame_parms.soundingrs_ul_config_common.srs_SubframeConfig = 7;
-
-  PHY_vars_eNB->soundingrs_ul_config_dedicated[UE_id].srs_ConfigIndex = 1;
-  PHY_vars_eNB->soundingrs_ul_config_dedicated[UE_id].srs_Bandwidth = 0;
-  PHY_vars_eNB->soundingrs_ul_config_dedicated[UE_id].transmissionComb = 0;
-  PHY_vars_eNB->soundingrs_ul_config_dedicated[UE_id].freqDomainPosition = 0;
-  PHY_vars_eNB->cooperation_flag = cooperation_flag;
-  //  PHY_vars_eNB->eNB_UE_stats[0].SRS_parameters = PHY_vars_UE->SRS_parameters;
-
-  PHY_vars_eNB->pusch_config_dedicated[UE_id].betaOffset_ACK_Index = beta_ACK;
-  PHY_vars_eNB->pusch_config_dedicated[UE_id].betaOffset_RI_Index  = beta_RI;
-  PHY_vars_eNB->pusch_config_dedicated[UE_id].betaOffset_CQI_Index = beta_CQI;
-  PHY_vars_UE->pusch_config_dedicated[eNB_id].betaOffset_ACK_Index = beta_ACK;
-  PHY_vars_UE->pusch_config_dedicated[eNB_id].betaOffset_RI_Index  = beta_RI;
-  PHY_vars_UE->pusch_config_dedicated[eNB_id].betaOffset_CQI_Index = beta_CQI;
-
-  printf("PUSCH Beta : ACK %f, RI %f, CQI %f\n",(double)beta_ack[beta_ACK]/8,(double)beta_ri[beta_RI]/8,(double)beta_cqi[beta_CQI]/8);
-
-  UE2eNB = new_channel_desc_scm(PHY_vars_UE->lte_frame_parms.nb_antennas_tx,//b
-                                PHY_vars_eNB->lte_frame_parms.nb_antennas_rx,//b
-                                channel_model,
-                                BW,
-                                forgetting_factor,
-                                0, //rx_sample_offset
-                                0);
-  PHY_vars_eNB->ulsch_eNB[0] = new_eNB_ulsch(3,0);
-  PHY_vars_UE->ulsch_ue[0]   = new_ue_ulsch(3,0);
-  //modif end UL
-
-  if (eNB2UE==NULL) {
-    msg("Problem generating channel model. Exiting.\n");
-    exit(-1);
-  }
-
-  //  if (hold_channel==1)
-  //random_channel(eNB2UE);
-
-  //UE2eNB = eNB2UE;
-
-  for (k=0; k<n_users; k++) {
-    // Create transport channel structures for 2 transport blocks (MIMO)
-    for (i=0; i<2; i++) {
-      PHY_vars_eNB->dlsch_eNB[k][i] = new_eNB_dlsch(1,8,0);
-
-      if (!PHY_vars_eNB->dlsch_eNB[k][i]) {
-        printf("Can't get eNB dlsch structures\n");
-        exit(-1);
-      }
-
-      PHY_vars_eNB->dlsch_eNB[k][i]->rnti = n_rnti+k;
-    }
-  }
-
-  for (i=0; i<2; i++) {
-    PHY_vars_UE->dlsch_ue[0][i]  = new_ue_dlsch(1,8,0);
-
-    if (!PHY_vars_UE->dlsch_ue[0][i]) {
-      printf("Can't get ue dlsch structures\n");
-      exit(-1);
-    }
-
-    PHY_vars_UE->dlsch_ue[0][i]->rnti   = n_rnti; //b Check rnti numb
-  }
-
-  generate_ue_ulsch_params_from_dci((void *)&UL_alloc_pdu,
-                                    14,
-                                    (subframe_UL<4)?(subframe_UL+6):(subframe_UL-4),
-                                    format0,
-                                    PHY_vars_UE,
-                                    SI_RNTI,
-                                    RA_RNTI,
-                                    P_RNTI,
-                                    0,
-                                    srs_flag);
-
-  generate_eNB_ulsch_params_from_dci((DCI0_5MHz_TDD_1_6_t *)&UL_alloc_pdu,
-                                     14,
-                                     (subframe_UL<4)?(subframe_UL+6):(subframe_UL-4),
-                                     format0,
-                                     0,
-                                     PHY_vars_eNB,
-                                     SI_RNTI,
-                                     RA_RNTI,
-                                     P_RNTI,
-                                     srs_flag);
-
-  PHY_vars_UE->ulsch_ue[0]->o_ACK[0] = 1;
-  //modif end UL
-
-
-  if (DLSCH_alloc_pdu2_2D[0].tpmi == 5) {
-
-    PHY_vars_eNB->eNB_UE_stats[0].DL_pmi_single = (unsigned short)(taus()&0xffff);
-
-    if (n_users>1)
-      PHY_vars_eNB->eNB_UE_stats[1].DL_pmi_single = (PHY_vars_eNB->eNB_UE_stats[0].DL_pmi_single ^ 0x1555); //opposite PMI
-  } else {
-    PHY_vars_eNB->eNB_UE_stats[0].DL_pmi_single = 0;
-
-    if (n_users>1)
-      PHY_vars_eNB->eNB_UE_stats[1].DL_pmi_single = 0;
-  }
-
-
-  if (input_fd==NULL) {
-
-    for(k=0; k<n_users; k++) {
-      printf("Generating dlsch params for user %d\n",k);
-      generate_eNB_dlsch_params_from_dci(0,
-                                         &DLSCH_alloc_pdu2_2D[k],
-                                         n_rnti+k,
-                                         format2_2D_M10PRB,
-                                         PHY_vars_eNB->dlsch_eNB[k],
-                                         &PHY_vars_eNB->lte_frame_parms,
-                                         SI_RNTI,
-                                         RA_RNTI,
-                                         P_RNTI,
-                                         PHY_vars_eNB->eNB_UE_stats[k].DL_pmi_single);
-    }
-
-    num_dci = 0;
-    num_ue_spec_dci = 0;
-    num_common_dci = 0;
-
-
-    // UE specific DCI
-    for(k=0; k<n_users; k++) {
-      memcpy(&dci_alloc[num_dci].dci_pdu[0],&DLSCH_alloc_pdu2_2D[k],sizeof(DCI2_5MHz_2D_M10PRB_TDD_t));
-      dci_alloc[num_dci].dci_length = sizeof_DCI2_5MHz_2D_M10PRB_TDD_t;
-      dci_alloc[num_dci].L          = 2;
-      dci_alloc[num_dci].rnti       = n_rnti+k;
-      dci_alloc[num_dci].format     = format2_2D_M10PRB;
-
-      dump_dci(&PHY_vars_eNB->lte_frame_parms,&dci_alloc[num_dci]);
-
-      num_dci++;
-      num_ue_spec_dci++;
-
-
-    }
-
-    for (k=0; k<n_users; k++) {
-
-      input_buffer_length = PHY_vars_eNB->dlsch_eNB[k][0]->harq_processes[0]->TBS/8;
-      input_buffer[k] = (unsigned char *)malloc(input_buffer_length+4);
-      memset(input_buffer[k],0,input_buffer_length+4);
-
-      if (input_trch_file==0) {
-        for (i=0; i<input_buffer_length; i++) {
-          input_buffer[k][i]= (unsigned char)(taus()&0xff);
-        }
-      }
-
-      else {
-        i=0;
-
-        while ((!feof(input_trch_fd)) && (i<input_buffer_length<<3)) {
-          fscanf(input_trch_fd,"%s",input_trch_val);
-
-          if (input_trch_val[0] == '1')
-            input_buffer[k][i>>3]+=(1<<(7-(i&7)));
-
-          if (i<16)
-            printf("input_trch_val %d : %c\n",i,input_trch_val[0]);
-
-          i++;
-
-          if (((i%8) == 0) && (i<17))
-            printf("%x\n",input_buffer[k][(i-1)>>3]);
-        }
-
-        printf("Read in %d bits\n",i);
-      }
-    }
-  }
-
-  if (PHY_vars_eNB->lte_frame_parms.Ncp == 0) {  // normal prefix
-    pilot1 = 4;
-    pilot2 = 7;
-    pilot3 = 11;
-  } else { // extended prefix
-    pilot1 = 3;
-    pilot2 = 6;
-    pilot3 = 9;
-  }
-
-  for (ch_realization=0; ch_realization<n_ch_rlz; ch_realization++) {
-    if(abstx) {
-      printf("**********************Channel Realization Index = %d **************************\n", ch_realization);
-    }
-
-    for (SNR=snr0; SNR<snr1; SNR+=snr_step) {
-      errs_eNB[0]=0;
-      errs_eNB[1]=0;
-      errs_eNB[2]=0;
-      errs_eNB[3]=0;
-      round_trials_eNB[0] = 0;
-      round_trials_eNB[1] = 0;
-      round_trials_eNB[2] = 0;
-      round_trials_eNB[3] = 0;
-      errs_UE[0]=0;
-      errs_UE[1]=0;
-      errs_UE[2]=0;
-      errs_UE[3]=0;
-      round_trials_UE[0] = 0;
-      round_trials_UE[1] = 0;
-      round_trials_UE[2] = 0;
-      round_trials_UE[3] = 0;
-
-      random_channel(eNB2UE);
-
-      UE2eNB = eNB2UE;
-
-      dci_errors=0;
-      avg_ber = 0;
-      llb=0;
-      round_UE=0;
-      round_eNB=0;
-      //modif start UL
-      randominit(0);
-
-      harq_pid = subframe2harq_pid(&PHY_vars_UE->lte_frame_parms,subframe_UL);
-
-      if (input_fd == NULL) {
-
-        input_buffer_length_UE = PHY_vars_UE->ulsch_ue[0]->harq_processes[harq_pid]->TBS/8;
-
-        //input_buffer_UE = (unsigned char *)malloc(input_buffer_length_UE+4);//b
-        input_buffer_UE = (char *)malloc(input_buffer_length_UE+4);//b
-        mac_xface->frame=1;
-
-        if (n_frames == 1) {
-          trch_out_fd = fopen("ulsch_trch.txt","w");
-
-          for (i=0; i<input_buffer_length_UE; i++) {
-            input_buffer_UE[i] = taus()&0xff; //b
-
-            //printf("input_buffer_UE[%d] = %d\n", i,input_buffer_UE[i]);
-            for (j=0; j<8; j++)
-              fprintf(trch_out_fd,"%d\n",(input_buffer_UE[i]>>(7-j))&1);
-          } //exit(-1);
-
-          fclose(trch_out_fd);
-        }
-      } else {
-        n_frames=1;
-        i=0;
-
-        while (!feof(input_fd)) {
-          fscanf(input_fd,"%s %s",input_val_str,input_val_str2);//&input_val1,&input_val2);
-
-          if ((i%4)==0) {
-            ((short*)txdata_UE[0])[i/2] = (short)((1<<15)*strtod(input_val_str,NULL));
-            ((short*)txdata_UE[0])[(i/2)+1] = (short)((1<<15)*strtod(input_val_str2,NULL));
-
-            if ((i/4)<100)
-              printf("sample %d => %e + j%e (%d +j%d)\n",i/4,strtod(input_val_str,NULL),strtod(input_val_str2,NULL),((short*)txdata_UE[0])[i/4],((short*)txdata_UE[0])[(i/4)+1]);//1,input_val2,);
-          }
-
-          i++;
-
-          if (i>(FRAME_LENGTH_SAMPLES))
-            break;
-        }
-
-        printf("Read in %d samples\n",i/4);
-        write_output("txsig0_UE.m","txs0_UE", txdata_UE[0],2*frame_parms->samples_per_tti,1,1);
-
-        tx_lev_UE = signal_energy(&txdata_UE[0][0],
-                                  OFDM_SYMBOL_SIZE_COMPLEX_SAMPLES);
-        tx_lev_UE_dB = (unsigned int) dB_fixed(tx_lev_UE);
-
-      }
-
-      //modif end UL
-
-      for (trials = 0; trials<n_frames; trials++) {
-        //  printf("Trial %d\n",trials);
-        fflush(stdout);
-        round_eNB=0;
-        round_UE=0;
-
-        //modif start b
-
-        if(trials > 0) {
-          for (i=0; i<input_buffer_length_UE; i++) {
-            input_buffer_UE[i]=(char)(dl_ch_estimates[i]);
-            //printf("input_buffer_UE[%d]= %d,  dl_ch_estimates[%d]=%d \n",i,input_buffer_UE[i],i,dl_ch_estimates[i]);
-
-          }
-
-          //for(aa=0;aa<12;aa++)
-          //    printf("transmit[%d]=%d \n",aa,input_buffer_UE[aa]);
-        }
-
-        //modif end b
-
-        //if (trials%100==0)
-        eNB2UE->first_run = 1;
-
-        while (round_eNB < num_rounds) {
-          round_trials_eNB[round_eNB]++;
-          round_trials_UE[round_UE]++;
-
-          if(transmission_mode>=5)
-            pmi_feedback=1;
-          else
-            pmi_feedback=0;
-
-PMI_FEEDBACK:
-
-          //modif start
-          //  printf("Trial %d : Round %d, pmi_feedback %d \n",trials,round_eNB,pmi_feedback);
-          for (aa=0; aa<PHY_vars_eNB->lte_frame_parms.nb_antennas_tx; aa++) {
-#ifdef IFFT_FPGA
-            memset(&PHY_vars_eNB->lte_eNB_common_vars.txdataF[eNB_id][aa][0],0,NUMBER_OF_USEFUL_CARRIERS*NUMBER_OF_SYMBOLS_PER_FRAME*sizeof(mod_sym_t));
-#else
-            memset(&PHY_vars_eNB->lte_eNB_common_vars.txdataF[eNB_id][aa][0],0,FRAME_LENGTH_COMPLEX_SAMPLES_NO_PREFIX*sizeof(mod_sym_t));
-#endif
-          }
-
-
-          if (input_fd==NULL) {
-            if (round_UE == 0) {
-              //modif start
-              PHY_vars_eNB->ulsch_eNB[0]->harq_processes[0]->Ndi = 1;
-              PHY_vars_eNB->ulsch_eNB[0]->harq_processes[0]->rvidx = round_UE>>1;
-              PHY_vars_UE->ulsch_ue[0]->harq_processes[0]->Ndi = 1;
-              PHY_vars_UE->ulsch_ue[0]->harq_processes[0]->rvidx = round_UE>>1;
-              //modif end
-            } else {
-              //modif start
-              PHY_vars_eNB->ulsch_eNB[0]->harq_processes[0]->Ndi = 0;
-              PHY_vars_eNB->ulsch_eNB[0]->harq_processes[0]->rvidx = round_UE>>1;
-              PHY_vars_UE->ulsch_ue[0]->harq_processes[0]->Ndi = 0;
-              PHY_vars_UE->ulsch_ue[0]->harq_processes[0]->rvidx = round_UE>>1;
-              //modif start
-
-            }
-
-            if (round_eNB == 0) {
-              PHY_vars_eNB->dlsch_eNB[0][0]->harq_processes[0]->Ndi = 1;
-              PHY_vars_eNB->dlsch_eNB[0][0]->harq_processes[0]->rvidx = round_eNB>>1;
-              DLSCH_alloc_pdu2_2D[0].ndi1             = 1;
-              DLSCH_alloc_pdu2_2D[0].rv1              = 0;
-              memcpy(&dci_alloc[0].dci_pdu[0],&DLSCH_alloc_pdu2_2D[0],sizeof(DCI2_5MHz_2D_M10PRB_TDD_t));
-            } else {
-
-              PHY_vars_eNB->dlsch_eNB[0][0]->harq_processes[0]->Ndi = 0;
-              PHY_vars_eNB->dlsch_eNB[0][0]->harq_processes[0]->rvidx = round_eNB>>1;
-              DLSCH_alloc_pdu2_2D[0].ndi1             = 0;
-              DLSCH_alloc_pdu2_2D[0].rv1              = round_eNB>>1;
-              memcpy(&dci_alloc[0].dci_pdu[0],&DLSCH_alloc_pdu2_2D[0],sizeof(DCI2_5MHz_2D_M10PRB_TDD_t));
-            }
-
-            //modif start UL
-#ifdef OFDMA_ULSCH
-
-            if (srs_flag)
-              generate_srs_tx(PHY_vars_UE,0,AMP,subframe_UL);
-
-            generate_drs_pusch(PHY_vars_UE,0,AMP,subframe_UL,first_rb,nb_rb_UE);
-
-#else
-
-            if (srs_flag)
-              generate_srs_tx(PHY_vars_UE,0,scfdma_amps[nb_rb_UE],subframe_UL);
-
-            generate_drs_pusch(PHY_vars_UE,0,
-                               scfdma_amps[nb_rb_UE],subframe_UL,
-                               PHY_vars_UE->ulsch_ue[0]->harq_processes[0]->first_rb,
-                               PHY_vars_UE->ulsch_ue[0]->harq_processes[0]->nb_rb);
-#endif
-
-            //printf("harq_pid = %d\n\n",harq_pid);
-            if (ulsch_encoding(input_buffer_UE, //prob
-                               &PHY_vars_UE->lte_frame_parms,
-                               PHY_vars_UE->ulsch_ue[0],
-                               harq_pid,
-                               1, // transmission mode
-                               control_only_flag,
-                               1// Nbundled
-                              )==-1) {
-              printf("ulsim.c Problem with ulsch_encoding\n");
-              exit(-1);
-            }
-
-#ifdef OFDMA_ULSCH
-            ulsch_modulation(PHY_vars_UE->lte_ue_common_vars.txdataF,AMP,subframe_UL,&PHY_vars_UE->lte_frame_parms,PHY_vars_UE->ulsch_ue[0],cooperation_flag);
-#else
-            //  printf("Generating PUSCH in subframe %d with amp %d, nb_rb %d\n",subframe,scfdma_amps[nb_rb_UE],nb_rb_UE);
-            ulsch_modulation(PHY_vars_UE->lte_ue_common_vars.txdataF,scfdma_amps[nb_rb_UE],
-                             subframe_UL,&PHY_vars_UE->lte_frame_parms,
-                             PHY_vars_UE->ulsch_ue[0],cooperation_flag);
-#endif
-            //modif end UL
-
-            //********************** DL part
-            num_pdcch_symbols_2 = generate_dci_top(num_ue_spec_dci,
-                                                   num_common_dci,
-                                                   dci_alloc,
-                                                   0,
-                                                   1024,
-                                                   &PHY_vars_eNB->lte_frame_parms,
-                                                   PHY_vars_eNB->lte_eNB_common_vars.txdataF[eNB_id],
-                                                   subframe);
-
-            if (num_pdcch_symbols_2 > num_pdcch_symbols) {
-              msg("Error: given num_pdcch_symbols not big enough\n");
-              exit(-1);
-            }
-
-
-            for (k=0; k<n_users; k++) {
-              coded_bits_per_codeword = get_G(&PHY_vars_eNB->lte_frame_parms,
-                                              PHY_vars_eNB->dlsch_eNB[k][0]->nb_rb,
-                                              PHY_vars_eNB->dlsch_eNB[k][0]->rb_alloc,
-                                              get_Qm(PHY_vars_eNB->dlsch_eNB[k][0]->harq_processes[0]->mcs),
-                                              num_pdcch_symbols,
-                                              subframe);
-
-#ifdef TBS_FIX
-              tbs = (double)3*dlsch_tbs25[get_I_TBS(PHY_vars_eNB->dlsch_eNB[k][0]->harq_processes[0]->mcs)][PHY_vars_eNB->dlsch_eNB[k][0]->nb_rb-1]/4;
-#else
-              tbs = (double)dlsch_tbs25[get_I_TBS(PHY_vars_eNB->dlsch_eNB[k][0]->harq_processes[0]->mcs)][PHY_vars_eNB->dlsch_eNB[k][0]->nb_rb-1];
-#endif
-
-              rate = (double)tbs/(double)coded_bits_per_codeword;
-
-              uncoded_ber_bit = (short*) malloc(2*coded_bits_per_codeword);
-
-              if (trials==0 && round_eNB==0)
-                printf("Rate = %f (G %d, TBS %d, TBS_UE %d,mod %d, pdcch_sym %d)\n",
-                       rate,
-                       coded_bits_per_codeword,
-                       tbs,
-                       PHY_vars_UE->ulsch_ue[0]->harq_processes[harq_pid]->TBS,//b
-                       get_Qm(PHY_vars_eNB->dlsch_eNB[k][0]->harq_processes[0]->mcs),
-                       num_pdcch_symbols);
-
-
-              // use the PMI from previous trial
-              if (DLSCH_alloc_pdu2_2D[0].tpmi == 5) {
-                PHY_vars_eNB->dlsch_eNB[0][0]->pmi_alloc = quantize_subband_pmi(&PHY_vars_UE->PHY_measurements,0);
-                PHY_vars_UE->dlsch_ue[0][0]->pmi_alloc = quantize_subband_pmi(&PHY_vars_UE->PHY_measurements,0);
-
-                if (n_users>1)
-                  PHY_vars_eNB->dlsch_eNB[1][0]->pmi_alloc = (PHY_vars_eNB->dlsch_eNB[0][0]->pmi_alloc ^ 0x1555);
-
-                /*
-                if ((trials<10) && (round_eNB==0)) {
-                  printf("tx PMI UE0 %x (pmi_feedback %d)\n",pmi2hex_2Ar1(PHY_vars_eNB->dlsch_eNB[0][0]->pmi_alloc),pmi_feedback);
-                  if (transmission_mode ==5)
-                    printf("tx PMI UE1 %x\n",pmi2hex_2Ar1(PHY_vars_eNB->dlsch_eNB[1][0]->pmi_alloc));
-                }
-                */
-              }
-
-              if (dlsch_encoding(input_buffer[k],
-                                 &PHY_vars_eNB->lte_frame_parms,
-                                 num_pdcch_symbols,
-                                 PHY_vars_eNB->dlsch_eNB[k][0],
-                                 subframe)<0)
-                exit(-1);
-
-              // printf("Did not Crash here 1\n");
-              PHY_vars_eNB->dlsch_eNB[k][0]->rnti = n_rnti+k;
-              dlsch_scrambling(&PHY_vars_eNB->lte_frame_parms,
-                               num_pdcch_symbols,
-                               PHY_vars_eNB->dlsch_eNB[k][0],
-                               coded_bits_per_codeword,
-                               0,
-                               subframe<<1);
-
-              if (n_frames==1) {
-                for (s=0; s<PHY_vars_eNB->dlsch_eNB[k][0]->harq_processes[0]->C; s++) {
-                  if (s<PHY_vars_eNB->dlsch_eNB[k][0]->harq_processes[0]->Cminus)
-                    Kr = PHY_vars_eNB->dlsch_eNB[k][0]->harq_processes[0]->Kminus;
-                  else
-                    Kr = PHY_vars_eNB->dlsch_eNB[k][0]->harq_processes[0]->Kplus;
-
-                  Kr_bytes = Kr>>3;
-
-                  for (i=0; i<Kr_bytes; i++)
-                    printf("%d : (%x)\n",i,PHY_vars_eNB->dlsch_eNB[k][0]->harq_processes[0]->c[s][i]);
-                }
-              }
-
-              // printf("Did not Crash here 2\n");
-
-              if (transmission_mode == 5) {
-                amp = (int16_t)(((int32_t)1024*ONE_OVER_SQRT2_Q15)>>15);
-              } else
-                amp = 1024;
-
-              //        if (k==1)
-              //  amp=0;
-              re_allocated = dlsch_modulation(PHY_vars_eNB->lte_eNB_common_vars.txdataF[eNB_id],
-                                              amp,
-                                              subframe,
-                                              &PHY_vars_eNB->lte_frame_parms,
-                                              num_pdcch_symbols,
-                                              PHY_vars_eNB->dlsch_eNB[k][0]);
-
-              // printf("Did not Crash here 3\n");
-              if (trials==0 && round_eNB==0)
-                printf("RE count %d\n",re_allocated);
-
-              if (num_layers>1)
-                re_allocated = dlsch_modulation(PHY_vars_eNB->lte_eNB_common_vars.txdataF[eNB_id],
-                                                1024,
-                                                subframe,
-                                                &PHY_vars_eNB->lte_frame_parms,
-                                                num_pdcch_symbols,
-                                                PHY_vars_eNB->dlsch_eNB[k][1]);
-            } //n_users
-
-            //  printf("Did not Crash here 4\n");
-
-            generate_pilots(PHY_vars_eNB,
-                            PHY_vars_eNB->lte_eNB_common_vars.txdataF[eNB_id],
-                            1024,
-                            LTE_NUMBER_OF_SUBFRAMES_PER_FRAME);
-
-
-#ifdef IFFT_FPGA
-
-            if (n_frames==1) {
-              write_output("txsigF0.m","txsF0", PHY_vars_eNB->lte_eNB_common_vars.txdataF[0][0],300*nsymb*10,1,4);
-              //modif start UL
-              write_output("txsigF0_UE.m","txsF0_UE", &PHY_vars_UE->lte_ue_common_vars.txdataF[0][frame_parms->ofdm_symbol_size*nsymb*subframe_UL],frame_parms->ofdm_symbol_size*nsymb,1,1);
-
-              //modif end UL
-              if (PHY_vars_eNB->lte_frame_parms.nb_antennas_tx>1)
-                write_output("txsigF1.m","txsF1", PHY_vars_eNB->lte_eNB_common_vars.txdataF[0][1],300*nsymb*10,1,4);
-            }
-
-            // do table lookup and write results to txdataF2
-            for (aa=0; aa<PHY_vars_eNB->lte_frame_parms.nb_antennas_tx; aa++) {
-              ind = 0;
-
-              for (i=0; i<FRAME_LENGTH_COMPLEX_SAMPLES_NO_PREFIX; i++)
-                if (((i%512)>=1) && ((i%512)<=150)) {
-                  txdataF2[aa][i] = ((int*)mod_table)[PHY_vars_eNB->lte_eNB_common_vars.txdataF[eNB_id][aa][ind++]];
-                  //modif start UL
-                  txdataF2_UE[aa][i] = ((int*)mod_table)[PHY_vars_UE->lte_ue_common_vars.txdataF[aa][l++]];
-                }
-              //modif end UL
-                else if ((i%512)>=362) {
-                  txdataF2[aa][i] = ((int*)mod_table)[PHY_vars_eNB->lte_eNB_common_vars.txdataF[eNB_id][aa][ind++]];
-                  //modif start UL
-                  txdataF2_UE[aa][i] = ((int*)mod_table)[PHY_vars_UE->lte_ue_common_vars.txdataF[aa][l++]];
-                }
-              //modif end UL
-                else {
-                  txdataF2[aa][i] = 0;
-                  //modif start UL
-                  txdataF2_UE[aa][i] = 0;
-                }
-
-              //modif end UL
-              //    printf("ind=%d\n",ind);
-            }
-
-            if (n_frames==1) {
-              write_output("txsigF20.m","txsF20", txdataF2[0], FRAME_LENGTH_COMPLEX_SAMPLES_NO_PREFIX,1,1);
-              //modif start UL
-              write_output("txsigF20_UE.m","txsF20_UE", txdataF2_UE[0],FRAME_LENGTH_COMPLEX_SAMPLES_NO_PREFIX,1,1);
-
-              //modif end UL
-              if (PHY_vars_eNB->lte_frame_parms.nb_antennas_tx>1)
-                write_output("txsigF21.m","txsF21", txdataF2[1], FRAME_LENGTH_COMPLEX_SAMPLES_NO_PREFIX,1,1);
-            }
-
-            tx_lev = 0;
-
-            for (aa=0; aa<PHY_vars_eNB->lte_frame_parms.nb_antennas_tx; aa++) {
-              if (frame_parms->Ncp == 1)
-                PHY_ofdm_mod(&txdataF2[aa][subframe*nsymb*PHY_vars_eNB->lte_frame_parms.ofdm_symbol_size],        // input
-                             &txdata[aa][subframe*PHY_vars_eNB->lte_frame_parms.samples_per_tti],         // output
-                             PHY_vars_eNB->lte_frame_parms.log2_symbol_size,                // log2_fft_size
-                             2*nsymb,//NUMBER_OF_SYMBOLS_PER_FRAME,                 // number of symbols
-                             PHY_vars_eNB->lte_frame_parms.nb_prefix_samples,               // number of prefix samples
-                             PHY_vars_eNB->lte_frame_parms.twiddle_ifft,  // IFFT twiddle factors
-                             PHY_vars_eNB->lte_frame_parms.rev,           // bit-reversal permutation
-                             CYCLIC_PREFIX);
-              else {
-                normal_prefix_mod(&txdataF2[aa][subframe*nsymb*PHY_vars_eNB->lte_frame_parms.ofdm_symbol_size],
-                                  &txdata[aa][subframe*PHY_vars_eNB->lte_frame_parms.samples_per_tti],
-                                  2*nsymb,
-                                  frame_parms);
-              }
-
-              //modif start UL
-              for (aa=0; aa<1; aa++)  {
-                if (frame_parms->Ncp == 1)
-                  PHY_ofdm_mod(txdataF2_UE[aa],        // input
-                               txdata_UE[aa],         // output
-                               PHY_vars_UE->lte_frame_parms.log2_symbol_size,                // log2_fft_size
-                               nsymb,                 // number of symbols
-                               PHY_vars_UE->lte_frame_parms.nb_prefix_samples,               // number of prefix samples
-                               PHY_vars_UE->lte_frame_parms.twiddle_ifft,  // IFFT twiddle factors
-                               PHY_vars_UE->lte_frame_parms.rev,           // bit-reversal permutation
-                               CYCLIC_PREFIX);
-                else
-                  normal_prefix_mod(txdataF2_UE[aa],txdata_UE[aa],nsymb,frame_parms);
-
-
-              }
-
-              //modif end UL
-
-              tx_lev += signal_energy(&txdata[aa][(PHY_vars_eNB->lte_frame_parms.ofdm_symbol_size+PHY_vars_eNB->lte_frame_parms.nb_prefix_samples0)],
-                                      OFDM_SYMBOL_SIZE_COMPLEX_SAMPLES);
-            }
-
-
-#else //IFFT_FPGA
-
-            if (n_frames==1) {
-              write_output("txsigF0.m","txsF0", PHY_vars_eNB->lte_eNB_common_vars.txdataF[eNB_id][0],FRAME_LENGTH_COMPLEX_SAMPLES_NO_PREFIX,1,1);
-              //modif start UL
-              write_output("txsigF0_UE.m","txsF0_UE", &PHY_vars_UE->lte_ue_common_vars.txdataF[0][512*nsymb*subframe_UL],512*nsymb,1,1);
-
-              //modif end UL
-              if (PHY_vars_eNB->lte_frame_parms.nb_antennas_tx>1)
-                write_output("txsigF1.m","txsF1", PHY_vars_eNB->lte_eNB_common_vars.txdataF[eNB_id][1],FRAME_LENGTH_COMPLEX_SAMPLES_NO_PREFIX,1,1);
-            }
-
-            tx_lev = 0;
-
-            for (aa=0; aa<PHY_vars_eNB->lte_frame_parms.nb_antennas_tx; aa++) {
-              if (frame_parms->Ncp == 1)
-                PHY_ofdm_mod(&PHY_vars_eNB->lte_eNB_common_vars.txdataF[eNB_id][aa][subframe*nsymb*PHY_vars_eNB->lte_frame_parms.ofdm_symbol_size],        // input
-                             &txdata[aa][subframe*PHY_vars_eNB->lte_frame_parms.samples_per_tti],         // output
-                             PHY_vars_eNB->lte_frame_parms.log2_symbol_size,                // log2_fft_size
-                             2*nsymb,//NUMBER_OF_SYMBOLS_PER_FRAME,                 // number of symbols
-                             PHY_vars_eNB->lte_frame_parms.nb_prefix_samples,               // number of prefix samples
-                             PHY_vars_eNB->lte_frame_parms.twiddle_ifft,  // IFFT twiddle factors
-                             PHY_vars_eNB->lte_frame_parms.rev,           // bit-reversal permutation
-                             CYCLIC_PREFIX);
-              else {
-                normal_prefix_mod(&PHY_vars_eNB->lte_eNB_common_vars.txdataF[eNB_id][aa][subframe*nsymb*PHY_vars_eNB->lte_frame_parms.ofdm_symbol_size],
-                                  &txdata[aa][subframe*PHY_vars_eNB->lte_frame_parms.samples_per_tti],
-                                  2*nsymb,
-                                  frame_parms);
-              }
-
-              tx_lev += signal_energy(&txdata[aa][subframe*PHY_vars_eNB->lte_frame_parms.samples_per_tti],
-                                      PHY_vars_eNB->lte_frame_parms.samples_per_tti);
-            }
-
-            //modif start UL
-            tx_lev_UE=0;
-
-            for (aa=0; aa<1; aa++) {
-              if (frame_parms->Ncp == 1)
-                PHY_ofdm_mod(&PHY_vars_UE->lte_ue_common_vars.txdataF[aa][subframe_UL*nsymb*OFDM_SYMBOL_SIZE_COMPLEX_SAMPLES_NO_PREFIX],        // input
-                             &txdata_UE[aa][PHY_vars_eNB->lte_frame_parms.samples_per_tti*subframe_UL],         // output
-                             PHY_vars_UE->lte_frame_parms.log2_symbol_size,                // log2_fft_size
-                             nsymb,                 // number of symbols
-                             PHY_vars_UE->lte_frame_parms.nb_prefix_samples,               // number of prefix samples
-                             PHY_vars_UE->lte_frame_parms.twiddle_ifft,  // IFFT twiddle factors
-                             PHY_vars_UE->lte_frame_parms.rev,           // bit-reversal permutation
-                             CYCLIC_PREFIX);
-              else
-                normal_prefix_mod(&PHY_vars_UE->lte_ue_common_vars.txdataF[aa][subframe_UL*nsymb*OFDM_SYMBOL_SIZE_COMPLEX_SAMPLES_NO_PREFIX],
-                                  &txdata_UE[aa][PHY_vars_eNB->lte_frame_parms.samples_per_tti*subframe_UL],
-                                  nsymb,
-                                  frame_parms);
-
-#ifndef OFDMA_ULSCH
-              apply_7_5_kHz(PHY_vars_UE,subframe_UL<<1);
-              apply_7_5_kHz(PHY_vars_UE,1+(subframe_UL<<1));
-#endif
-
-              tx_lev_UE += signal_energy(&txdata_UE[aa][PHY_vars_eNB->lte_frame_parms.samples_per_tti*subframe_UL],
-                                         OFDM_SYMBOL_SIZE_COMPLEX_SAMPLES);
-            }
-
-            //modif end UL
-#endif //IFFT_FPGA
-
-            tx_lev_dB = (unsigned int) dB_fixed(tx_lev);
-            //printf("tx_lev = %d (%d dB)\n",tx_lev,tx_lev_dB);
-
-            if (n_frames==1) {
-              write_output("txsig0.m","txs0", txdata[0],FRAME_LENGTH_COMPLEX_SAMPLES,1,1);
-            }
-
-          } //input_fd
-          else {  // Read signal from file
-            i=0;
-
-            while (!feof(input_fd)) {
-              fscanf(input_fd,"%s %s",input_val_str,input_val_str2);
-
-              if ((i%4)==0) {
-                ((short*)txdata[0])[i/2] = (short)((1<<15)*strtod(input_val_str,NULL));
-                ((short*)txdata[0])[(i/2)+1] = (short)((1<<15)*strtod(input_val_str2,NULL));
-
-                if ((i/4)<100)
-                  printf("sample %d => %e + j%e (%d +j%d)\n",i/4,strtod(input_val_str,NULL),strtod(input_val_str2,NULL),((short*)txdata[0])[i/4],((short*)txdata[0])[(i/4)+1]);//1,input_val2,);
-              }
-
-              i++;
-
-              if (i>(FRAME_LENGTH_SAMPLES))
-                break;
-            }
-
-            printf("Read in %d samples\n",i/4);
-            write_output("txsig0.m","txs0", txdata[0],2*frame_parms->samples_per_tti,1,1);
-            //    write_output("txsig1.m","txs1", txdata[1],FRAME_LENGTH_COMPLEX_SAMPLES,1,1);
-            tx_lev = signal_energy(&txdata[0][0],
-                                   OFDM_SYMBOL_SIZE_COMPLEX_SAMPLES);
-            tx_lev_dB = (unsigned int) dB_fixed(tx_lev);
-          }// else read from file
-
-          //modif start UL
-          tx_lev_UE_dB = (unsigned int) dB_fixed(tx_lev_UE);
-
-          if (n_frames==1) {
-            write_output("txsig0_UE.m","txs0_UE", txdata_UE[0],FRAME_LENGTH_COMPLEX_SAMPLES,1,1);
-          }
-
-          // multipath channel
-
-          for (i=0; i<PHY_vars_eNB->lte_frame_parms.samples_per_tti; i++) {
-            for (aa=0; aa<1; aa++) {
-              if (awgn_flag == 0) {
-                s_re_UE[aa][i] = ((double)(((short *)&txdata_UE[aa][PHY_vars_eNB->lte_frame_parms.samples_per_tti*subframe_UL]))[(i<<1)]);
-                s_im_UE[aa][i] = ((double)(((short *)&txdata_UE[aa][PHY_vars_eNB->lte_frame_parms.samples_per_tti*subframe_UL]))[(i<<1)+1]);
-              } else {
-                r_re_UE[aa][i] = ((double)(((short *)&txdata_UE[aa][PHY_vars_eNB->lte_frame_parms.samples_per_tti*subframe_UL]))[(i<<1)]);
-                r_im_UE[aa][i] = ((double)(((short *)&txdata_UE[aa][PHY_vars_eNB->lte_frame_parms.samples_per_tti*subframe_UL]))[(i<<1)+1]);
-              }
-            }
-          }
-
-          //printf("PHY_vars_eNB->lte_frame_parms.samples_per_tti = %d\n", PHY_vars_eNB->lte_frame_parms.samples_per_tti);
-
-
-          // filtre RF tx -> s_re_UE
-          //UL
-          if (decalibration == 1) {
-            for (aa=0; aa<PHY_vars_UE->lte_frame_parms.nb_antennas_tx; aa++) {
-              real_fir(s_re_UE[aa], s_im_UE[aa], s_re_out, s_im_out, s_coeffs_UE, s_ord_fir_UE, PHY_vars_eNB->lte_frame_parms.samples_per_tti);
-
-              for (i=0; i<PHY_vars_eNB->lte_frame_parms.samples_per_tti; i++) {
-                s_re_UE[aa][i] = s_re_out[i];
-                s_im_UE[aa][i] = s_im_out[i];
-              }
-            }
-          }
-
-          //UL
-
-          if (phase_offset == 1) {
-            for (aa=0; aa<PHY_vars_UE->lte_frame_parms.nb_antennas_rx; aa++) {
-              //printf("phase_in_UL avant = %f\n", phase_in_UL);
-              phase_offsets(s_re_UE[aa], s_im_UE[aa], s_re_out, s_im_out, PHY_vars_eNB->lte_frame_parms.samples_per_tti, &phase_in_UL, phase_inc_UL, -1);
-
-              for (i=0; i<PHY_vars_eNB->lte_frame_parms.samples_per_tti; i++) {
-                s_re_UE[aa][i] = s_re_out[i];
-                s_im_UE[aa][i] = s_im_out[i];
-              }
-
-              //printf("phase_in_UL apres = %f\n", phase_in_UL);
-            }
-          }
-
-          //modif end UL
-          //    printf("Copying tx ..., nsymb %d (n_tx %d), awgn %d\n",nsymb,PHY_vars_eNB->lte_frame_parms.nb_antennas_tx,awgn_flag);
-          for (i=0; i<2*nsymb*OFDM_SYMBOL_SIZE_COMPLEX_SAMPLES; i++) {
-            for (aa=0; aa<1; aa++) { //PHY_vars_eNB->lte_frame_parms.nb_antennas_tx
-              if (awgn_flag == 0) {
-                s_re[aa][i] = ((double)(((short *)txdata[aa]))[(2*subframe*PHY_vars_UE->lte_frame_parms.samples_per_tti) + (i<<1)]);
-                s_im[aa][i] = ((double)(((short *)txdata[aa]))[(2*subframe*PHY_vars_UE->lte_frame_parms.samples_per_tti) +(i<<1)+1]);
-              } else {
-                for (aarx=0; aarx<PHY_vars_UE->lte_frame_parms.nb_antennas_rx; aarx++) {
-                  if (aa==0) {
-                    r_re[aarx][i] = ((double)(((short *)txdata[aa]))[(2*subframe*PHY_vars_UE->lte_frame_parms.samples_per_tti) +(i<<1)]);
-                    r_im[aarx][i] = ((double)(((short *)txdata[aa]))[(2*subframe*PHY_vars_UE->lte_frame_parms.samples_per_tti) +(i<<1)+1]);
-                  } else {
-                    r_re[aarx][i] += ((double)(((short *)txdata[aa]))[(2*subframe*PHY_vars_UE->lte_frame_parms.samples_per_tti) +(i<<1)]);
-                    r_im[aarx][i] += ((double)(((short *)txdata[aa]))[(2*subframe*PHY_vars_UE->lte_frame_parms.samples_per_tti) +(i<<1)+1]);
-                  }
-
-                }
-              }
-            }
-          }
-
-          // filtre RF tx -> s_re
-          if (decalibration == 1) {
-            for (aa=0; aa<PHY_vars_eNB->lte_frame_parms.nb_antennas_tx; aa++) {
-              real_fir(s_re[aa], s_im[aa], s_re_out, s_im_out, s_coeffs_eNB, s_ord_fir_eNB, 2*nsymb*OFDM_SYMBOL_SIZE_COMPLEX_SAMPLES);
-
-              for (i=0; i<2*nsymb*OFDM_SYMBOL_SIZE_COMPLEX_SAMPLES; i++) {
-                s_re[aa][i] = s_re_out[i];
-                s_im[aa][i] = s_im_out[i];
-              }
-            }
-          }
-
-          //  n0_pow_dB = tx_lev_dB + 10*log10(512/(NB_RB*12)) + SNR;
-          // generate new channel if pmi_feedback==0, otherwise hold channel
-          if(abstx) {
-            if (trials==0 && round_eNB==0) {
-              if (awgn_flag == 0) {
-                if(SNR==snr0) {
-                  if(pmi_feedback==0)
-                    multipath_channel(eNB2UE,s_re,s_im,r_re,r_im,
-                                      2*nsymb*OFDM_SYMBOL_SIZE_COMPLEX_SAMPLES,1);
-                  else
-                    multipath_channel(eNB2UE,s_re,s_im,r_re,r_im,
-                                      2*nsymb*OFDM_SYMBOL_SIZE_COMPLEX_SAMPLES,1);//b
-                } else {
-                  multipath_channel(eNB2UE,s_re,s_im,r_re,r_im,
-                                    2*nsymb*OFDM_SYMBOL_SIZE_COMPLEX_SAMPLES,1);
-                }
-
-                freq_channel(eNB2UE, 25,51);
-                snr=pow(10.0,.1*SNR);
-                fprintf(csv_fd,"%f,",SNR);
-
-                for (u=0; u<50; u++) {
-                  abs_channel = (eNB2UE->chF[0][u].x*eNB2UE->chF[0][u].x + eNB2UE->chF[0][u].y*eNB2UE->chF[0][u].y);
-
-                  if(transmission_mode==5) {
-                    fprintf(csv_fd,"%e,",abs_channel);
-                  } else {
-                    pilot_sinr = 10*log10(snr*abs_channel);
-                    fprintf(csv_fd,"%e,",pilot_sinr);
-                  }
-                }
-              }
-            }
-
-            else {
-              if (awgn_flag == 0) {
-                multipath_channel(eNB2UE,s_re,s_im,r_re,r_im,
-                                  2*nsymb*OFDM_SYMBOL_SIZE_COMPLEX_SAMPLES,1);
-              }
-            }
-          }
-
-          else { //ABStraction
-            if (awgn_flag == 0) {
-
-              if (pmi_feedback==0) {
-                if (trials<n_K-1)
-                  multipath_channel(eNB2UE,s_re,s_im,r_re,r_im,
-                                    2*nsymb*OFDM_SYMBOL_SIZE_COMPLEX_SAMPLES,1);//b
-                else
-                  multipath_channel(eNB2UE,s_re,s_im,r_re,r_im,
-                                    2*nsymb*OFDM_SYMBOL_SIZE_COMPLEX_SAMPLES,0);//b
-              } else
-                multipath_channel(eNB2UE,s_re,s_im,r_re,r_im,
-                                  2*nsymb*OFDM_SYMBOL_SIZE_COMPLEX_SAMPLES,1);//b
-            }
-          }//ABStraction
-
-          //DL
-
-          if (phase_offset == 1) {
-            for (aa=0; aa<PHY_vars_UE->lte_frame_parms.nb_antennas_rx; aa++) {
-              //printf("phase_in_DL avant = %f\n", phase_in_DL);
-              phase_offsets(r_re[aa], r_im[aa], r_re_out, r_im_out, 2*nsymb*OFDM_SYMBOL_SIZE_COMPLEX_SAMPLES, &phase_in_DL, phase_inc_DL, 1);
-
-              for (i=0; i<2*nsymb*OFDM_SYMBOL_SIZE_COMPLEX_SAMPLES; i++) {
-                r_re[aa][i] = r_re_out[i];
-                r_im[aa][i] = r_im_out[i];
-              }
-
-              //printf("phase_in_DL apres = %f\n", phase_in_DL);
-            }
-          }
-
-          // filtre RF rx -> r_re
-          if (decalibration == 1) {
-            for (aa=0; aa<PHY_vars_UE->lte_frame_parms.nb_antennas_rx; aa++) {
-              real_fir(r_re[aa], r_im[aa], r_re_out, r_im_out, r_coeffs_eNB, r_ord_fir_eNB, 2*nsymb*OFDM_SYMBOL_SIZE_COMPLEX_SAMPLES);
-
-              for (i=0; i<2*nsymb*OFDM_SYMBOL_SIZE_COMPLEX_SAMPLES; i++) {
-                r_re[aa][i] = r_re_out[i];
-                r_im[aa][i] = r_im_out[i];
-              }
-            }
-          }
-
-          sigma2_dB = 10*log10((double)tx_lev) +10*log10(PHY_vars_eNB->lte_frame_parms.ofdm_symbol_size/(NB_RB*12)) - SNR;
-
-          //AWGN
-          sigma2 = pow(10,sigma2_dB/10);
-
-          //  n0_pow_dB = tx_lev_dB + 10*log10(512/(NB_RB*12)) + SNR;
-          //  printf("Sigma2 %f (sigma2_dB %f)\n",sigma2,sigma2_dB);
-          if (pmi_feedback==0) {
-            for (i=0; i<2*nsymb*OFDM_SYMBOL_SIZE_COMPLEX_SAMPLES; i++) {
-              for (aa=0; aa<PHY_vars_eNB->lte_frame_parms.nb_antennas_rx; aa++) {
-                //    printf("s_re[0][%d]=> %f , r_re[0][%d]=> %f\n",i,s_re[aa][i],i,r_re[aa][i]);
-                ((short*) PHY_vars_UE->lte_ue_common_vars.rxdata[aa])[(2*subframe*PHY_vars_UE->lte_frame_parms.samples_per_tti)+2*i] =
-                  (short) (r_re[aa][i] + sqrt(sigma2/2)*gaussdouble(0.0,1.0));
-                ((short*) PHY_vars_UE->lte_ue_common_vars.rxdata[aa])[(2*subframe*PHY_vars_UE->lte_frame_parms.samples_per_tti)+2*i+1] =
-                  (short) (r_im[aa][i] + (iqim*r_re[aa][i]) + sqrt(sigma2/2)*gaussdouble(0.0,1.0));
-              }
-            }
-          } else {
-            for (i=0; i<2*nsymb*OFDM_SYMBOL_SIZE_COMPLEX_SAMPLES; i++) {
-              for (aa=0; aa<PHY_vars_eNB->lte_frame_parms.nb_antennas_rx; aa++) {
-                //  printf("s_re[0][%d]=> %f , r_re[0][%d]=> %f\n",i,s_re[aa][i],i,r_re[aa][i]);
-                ((short*) PHY_vars_UE->lte_ue_common_vars.rxdata[aa])[(2*subframe*PHY_vars_UE->lte_frame_parms.samples_per_tti)+2*i] = (short) (r_re[aa][i]);
-                ((short*) PHY_vars_UE->lte_ue_common_vars.rxdata[aa])[(2*subframe*PHY_vars_UE->lte_frame_parms.samples_per_tti)+2*i+1] = (short) (r_im[aa][i]);
-              }
-            }
-          }
-
-          //modif start UL
-          if (awgn_flag == 0) {
-            if (trials<n_K-1)
-              multipath_channel(UE2eNB,s_re_UE,s_im_UE,r_re_UE,r_im_UE,
-                                PHY_vars_eNB->lte_frame_parms.samples_per_tti,1);//b
-            else
-              multipath_channel(UE2eNB,s_re_UE,s_im_UE,r_re_UE,r_im_UE,
-                                PHY_vars_eNB->lte_frame_parms.samples_per_tti,0);//b
-
-            //multipath_channel(UE2eNB,s_re_UE,s_im_UE,r_re_UE,r_im_UE,
-            //      PHY_vars_eNB->lte_frame_parms.samples_per_tti,0);//b
-          }
-
-          //(double)tx_lev_dB - (SNR+sigma2_UE_dB));
-
-          // filtre RF rx -> r_re
-          if (decalibration == 1) {
-            for (aa=0; aa<PHY_vars_eNB->lte_frame_parms.nb_antennas_rx; aa++) {
-              real_fir(r_re_UE[aa], r_im_UE[aa], r_re_out, r_im_out, r_coeffs_UE, r_ord_fir_UE, PHY_vars_eNB->lte_frame_parms.samples_per_tti);
-
-              for (i=0; i<PHY_vars_eNB->lte_frame_parms.samples_per_tti; i++) {
-                r_re_UE[aa][i] = r_re_out[i];
-                r_im_UE[aa][i] = r_im_out[i];
-              }
-            }
-          }
-
-          sigma2_UE_dB = tx_lev_UE_dB +10*log10(PHY_vars_UE->lte_frame_parms.ofdm_symbol_size/(PHY_vars_UE->lte_frame_parms.N_RB_DL*12)) - SNR;
-
-          //AWGN
-          sigma2_UE = pow(10,sigma2_UE_dB/10);
-
-          for (i=0; i<PHY_vars_eNB->lte_frame_parms.samples_per_tti; i++) {
-            for (aa=0; aa<PHY_vars_eNB->lte_frame_parms.nb_antennas_rx; aa++) {
-              ((short*) &PHY_vars_eNB->lte_eNB_common_vars.rxdata[0][aa][PHY_vars_eNB->lte_frame_parms.samples_per_tti*subframe_UL])[2*i] = (short) (r_re_UE[aa][i] + sqrt(sigma2_UE/2)*gaussdouble(0.0,1.0));
-              ((short*) &PHY_vars_eNB->lte_eNB_common_vars.rxdata[0][aa][PHY_vars_eNB->lte_frame_parms.samples_per_tti*subframe_UL])[2*i+1] = (short) (r_im_UE[aa][i] + (iqim*r_re_UE[aa][i]) + sqrt(
-                    sigma2_UE/2)*gaussdouble(0.0,1.0));
-            }
-          }
-
-          //modif end UL
-
-          //    lte_sync_time_init(PHY_vars_eNB->lte_frame_parms,lte_ue_common_vars);
-          //    lte_sync_time(lte_ue_common_vars->rxdata, PHY_vars_eNB->lte_frame_parms);
-          //    lte_sync_time_free();
-
-
-          if (n_frames==1) {
-            printf("RX level in null symbol %d\n",dB_fixed(signal_energy(&PHY_vars_UE->lte_ue_common_vars.rxdata[0][160+OFDM_SYMBOL_SIZE_COMPLEX_SAMPLES],OFDM_SYMBOL_SIZE_COMPLEX_SAMPLES/2)));
-            printf("RX level in data symbol %d\n",dB_fixed(signal_energy(&PHY_vars_UE->lte_ue_common_vars.rxdata[0][160+(2*OFDM_SYMBOL_SIZE_COMPLEX_SAMPLES)],OFDM_SYMBOL_SIZE_COMPLEX_SAMPLES/2)));
-            printf("rx_level Null symbol %f\n",10*log10(signal_energy_fp(r_re,r_im,1,OFDM_SYMBOL_SIZE_COMPLEX_SAMPLES/2,256+(OFDM_SYMBOL_SIZE_COMPLEX_SAMPLES))));
-            printf("rx_level data symbol %f\n",10*log10(signal_energy_fp(r_re,r_im,1,OFDM_SYMBOL_SIZE_COMPLEX_SAMPLES/2,256+(2*OFDM_SYMBOL_SIZE_COMPLEX_SAMPLES))));
-            //modif start UL
-            printf("rx__UE_level Null symbol %f\n",10*log10(signal_energy((int*)&PHY_vars_eNB->lte_eNB_common_vars.rxdata[0][0][160+(PHY_vars_eNB->lte_frame_parms.samples_per_tti*(1+subframe_UL))],
-                   OFDM_SYMBOL_SIZE_COMPLEX_SAMPLES/2)));
-            printf("rx_UE_level data symbol %f\n",10*log10(signal_energy((int*)&PHY_vars_eNB->lte_eNB_common_vars.rxdata[0][0][160+(PHY_vars_eNB->lte_frame_parms.samples_per_tti*subframe_UL)],
-                   OFDM_SYMBOL_SIZE_COMPLEX_SAMPLES/2)));
-            //modif end UL
-          }
-
-
-          i_mod = get_Qm(mcs_eNB);
-
-          // Inner receiver scheduling for 3 slots
-          for (Ns=(2*subframe); Ns<((2*subframe)+3); Ns++) {
-            for (l=0; l<pilot2; l++) {
-              if (n_frames==1)
-                printf("Ns %d, l %d\n",Ns,l);
-
-              slot_fep(PHY_vars_UE,
-                       l,
-                       Ns%20,
-                       0,
-                       0);
-
-#ifdef PERFECT_CE
-
-              if (awgn_flag==0) {
-                // fill in perfect channel estimates
-                freq_channel(eNB2UE,PHY_vars_UE->lte_frame_parms.N_RB_DL,301);
-
-                //write_output("channel.m","ch",desc1->ch[0],desc1->channel_length,1,8);
-                //write_output("channelF.m","chF",desc1->chF[0],nb_samples,1,8);
-                for(k=0; k<NUMBER_OF_eNB_MAX; k++) {
-                  for(aa=0; aa<frame_parms->nb_antennas_tx; aa++) {
-                    for (aarx=0; aarx<frame_parms->nb_antennas_rx; aarx++) {
-                      for (i=0; i<frame_parms->N_RB_DL*12; i++) {
-                        ((int16_t *) PHY_vars_UE->lte_ue_common_vars.dl_ch_estimates[k][(aa<<1)+aarx])[2*i+(l*frame_parms->ofdm_symbol_size+LTE_CE_FILTER_LENGTH)*2]=(int16_t)(
-                              eNB2UE->chF[aarx+(aa*frame_parms->nb_antennas_rx)][i].x*AMP/2);
-                        ((int16_t *) PHY_vars_UE->lte_ue_common_vars.dl_ch_estimates[k][(aa<<1)+aarx])[2*i+1+(l*frame_parms->ofdm_symbol_size+LTE_CE_FILTER_LENGTH)*2]=(int16_t)(
-                              eNB2UE->chF[aarx+(aa*frame_parms->nb_antennas_rx)][i].y*AMP/2) ;
-                      }
-                    }
-                  }
-                }
-              } else {
-                for(aa=0; aa<frame_parms->nb_antennas_tx; aa++) {
-                  for (aarx=0; aarx<frame_parms->nb_antennas_rx; aarx++) {
-                    for (i=0; i<frame_parms->N_RB_DL*12; i++) {
-                      ((int16_t *) PHY_vars_UE->lte_ue_common_vars.dl_ch_estimates[0][(aa<<1)+aarx])[2*i+(l*frame_parms->ofdm_symbol_size+LTE_CE_FILTER_LENGTH)*2]=AMP/2;
-                      ((int16_t *) PHY_vars_UE->lte_ue_common_vars.dl_ch_estimates[0][(aa<<1)+aarx])[2*i+1+(l*frame_parms->ofdm_symbol_size+LTE_CE_FILTER_LENGTH)*2]=0/2;
-                    }
-                  }
-                }
-              }
-
-#endif
-
-
-              if ((Ns==(2+(2*subframe))) && (l==0)) {
-                lte_ue_measurements(PHY_vars_UE,
-                                    subframe*PHY_vars_UE->lte_frame_parms.samples_per_tti,
-                                    1,
-                                    0);
-
-                if (transmission_mode==5 || transmission_mode==6) {
-                  if (pmi_feedback==1) {
-                    pmi_feedback= 0;
-                    //        printf("measured PMI %x\n",pmi2hex_2Ar1(quantize_subband_pmi(&PHY_vars_UE->PHY_measurements,0)));
-                    goto PMI_FEEDBACK;
-                  }
-                }
-
-              }
-
-
-              if ((Ns==(2*subframe)) && (l==pilot1)) {// process symbols 0,1,2
-
-                if (dci_flag == 1) {
-                  rx_pdcch(&PHY_vars_UE->lte_ue_common_vars,
-                           PHY_vars_UE->lte_ue_pdcch_vars,
-                           &PHY_vars_UE->lte_frame_parms,
-                           subframe,
-                           0,
-                           (PHY_vars_UE->lte_frame_parms.mode1_flag == 1) ? SISO : ALAMOUTI,
-                           0);
-
-                  // overwrite number of pdcch symbols
-                  PHY_vars_UE->lte_ue_pdcch_vars[0]->num_pdcch_symbols = num_pdcch_symbols;
-
-                  dci_cnt = dci_decoding_procedure(PHY_vars_UE,
-                                                   dci_alloc_rx,
-                                                   eNB_id,
-                                                   subframe,
-                                                   SI_RNTI,
-                                                   RA_RNTI);
-                  //printf("dci_cnt %d\n",dci_cnt);
-
-                  if (dci_cnt==0) {
-                    dlsch_active = 0;
-
-                    if (round_eNB==0) {
-                      dci_errors++;
-                      round_eNB=5;
-                      errs_eNB[0]++;
-                      round_trials_eNB[0]++;
-                      //      printf("DCI error trial %d errs[0] %d\n",trials,errs[0]);
-                    }
-
-                    //    for (i=1;i<=round_eNB;i++)
-                    //      round_trials_eNB[i]--;
-                    //    round_eNB=5;
-                  }
-
-                  for (i=0; i<dci_cnt; i++) {
-                    //printf("Generating dlsch parameters for RNTI %x\n",dci_alloc_rx[i].rnti);
-                    if ((dci_alloc_rx[i].rnti == n_rnti) &&
-                        (generate_ue_dlsch_params_from_dci(0,
-                                                           dci_alloc_rx[i].dci_pdu,
-                                                           dci_alloc_rx[i].rnti,
-                                                           dci_alloc_rx[i].format,
-                                                           PHY_vars_UE->dlsch_ue[0],
-                                                           &PHY_vars_UE->lte_frame_parms,
-                                                           SI_RNTI,
-                                                           RA_RNTI,
-                                                           P_RNTI)==0)) {
-                      //dump_dci(&PHY_vars_UE->lte_frame_parms,&dci_alloc_rx[i]);
-                      coded_bits_per_codeword = get_G(&PHY_vars_eNB->lte_frame_parms,
-                                                      PHY_vars_UE->dlsch_ue[0][0]->nb_rb,
-                                                      PHY_vars_UE->dlsch_ue[0][0]->rb_alloc,
-                                                      get_Qm(PHY_vars_UE->dlsch_ue[0][0]->harq_processes[PHY_vars_UE->dlsch_ue[0][0]->current_harq_pid]->mcs),
-                                                      PHY_vars_UE->lte_ue_pdcch_vars[0]->num_pdcch_symbols,
-                                                      subframe);
-                      dlsch_active = 1;
-                    } else {
-                      dlsch_active = 0;
-
-                      if (round_eNB==0) {
-                        dci_errors++;
-                        errs_eNB[0]++;
-                        round_trials_eNB[0]++;
-
-                        if (n_frames==1) {
-                          printf("DCI misdetection trial %d\n",trials);
-                          round_eNB=5;
-                        }
-                      }
-                    }
-                  }
-                }  // if dci_flag==1
-                else { //dci_flag == 0
-
-                  PHY_vars_UE->lte_ue_pdcch_vars[0]->crnti = n_rnti;
-                  PHY_vars_UE->lte_ue_pdcch_vars[0]->num_pdcch_symbols = num_pdcch_symbols;
-
-                  generate_ue_dlsch_params_from_dci(0,
-                                                    &DLSCH_alloc_pdu2_2D[0],
-                                                    C_RNTI,
-                                                    format2_2D_M10PRB,
-                                                    PHY_vars_UE->dlsch_ue[0],
-                                                    &PHY_vars_UE->lte_frame_parms,
-                                                    SI_RNTI,
-                                                    RA_RNTI,
-                                                    P_RNTI);
-                  dlsch_active = 1;
-                } // if dci_flag == 1
-              }
-
-              if (dlsch_active == 1) {
-                if ((Ns==(1+(2*subframe))) && (l==0)) {// process symbols 3,4,5
-
-                  for (m=PHY_vars_UE->lte_ue_pdcch_vars[0]->num_pdcch_symbols;
-                       m<pilot2;
-                       m++) {
-                    if (rx_dlsch(&PHY_vars_UE->lte_ue_common_vars,
-                                 PHY_vars_UE->lte_ue_dlsch_vars,
-                                 &PHY_vars_UE->lte_frame_parms,
-                                 eNB_id,
-                                 eNB_id_i,
-                                 PHY_vars_UE->dlsch_ue[0],
-                                 subframe,
-                                 m,
-                                 (m==PHY_vars_UE->lte_ue_pdcch_vars[0]->num_pdcch_symbols)?1:0,
-                                 dual_stream_UE,
-                                 &PHY_vars_UE->PHY_measurements,
-                                 i_mod)==-1) {
-
-                      dlsch_active = 0;
-                      break;
-                    }
-                  }
-
-                }
-
-                if ((Ns==(1+(2*subframe))) && (l==pilot1)) {// process symbols 6,7,8
-
-                  for (m=pilot2;
-                       m<pilot3;
-                       m++)
-                    if (rx_dlsch(&PHY_vars_UE->lte_ue_common_vars,
-                                 PHY_vars_UE->lte_ue_dlsch_vars,
-                                 &PHY_vars_UE->lte_frame_parms,
-                                 eNB_id,
-                                 eNB_id_i,
-                                 PHY_vars_UE->dlsch_ue[0],
-                                 subframe,
-                                 m,
-                                 0,
-                                 dual_stream_UE,
-                                 &PHY_vars_UE->PHY_measurements,
-                                 i_mod)==-1) {
-                      dlsch_active=0;
-                      break;
-                    }
-                }
-
-                if ((Ns==(2+(2*subframe))) && (l==0))  // process symbols 10,11, do deinterleaving for TTI
-                  for (m=pilot3;
-                       m<PHY_vars_UE->lte_frame_parms.symbols_per_tti;
-                       m++)
-                    if (rx_dlsch(&PHY_vars_UE->lte_ue_common_vars,
-                                 PHY_vars_UE->lte_ue_dlsch_vars,
-                                 &PHY_vars_UE->lte_frame_parms,
-                                 eNB_id,
-                                 eNB_id_i,
-                                 PHY_vars_UE->dlsch_ue[0],
-                                 subframe,
-                                 m,
-                                 0,
-                                 dual_stream_UE,
-                                 &PHY_vars_UE->PHY_measurements,
-                                 i_mod)==-1) {
-                      dlsch_active=0;
-                      break;
-                    }
-
-                //modif start
-                //Save the channel estimate
-                if (trials<=n_K) {
-                  do_quantization(PHY_vars_UE,
-                                  nsymb,
-                                  pilot1-1,
-                                  quant_v,
-                                  dl_ch_estimates,
-                                  eNB_id,
-                                  dec_f);
-                }
-
-                /*  do_bin(dl_ch_estimates,
-                dl_ch_estimates_length,
-                input_buffer_UE,
-                dec_f);
-                write_output("buffer1.m","buffer", input_buffer_UE,dl_ch_estimates_length*quant,1,4);
-                exit(-1);*/
-
-
-                //modif end
-
-                //if ((n_frames==1) && (Ns==(2+(2*subframe))) && (l==0))  {//b
-                if ((SNR==snr0) && (llb==0))  {
-                  llb=1;
-
-                  write_output("ch0enb.m","ch0",eNB2UE->ch[0],eNB2UE->channel_length,1,8);
-                  write_output("ch0ue.m","ch0",UE2eNB->ch[0],UE2eNB->channel_length,1,8);
-
-                  if (PHY_vars_eNB->lte_frame_parms.nb_antennas_tx>1)
-                    write_output("ch1.m","ch1",eNB2UE->ch[PHY_vars_eNB->lte_frame_parms.nb_antennas_rx],eNB2UE->channel_length,1,8);
-
-                  //***********************common vars
-                  write_output("rxsig0.m","rxs0", &PHY_vars_UE->lte_ue_common_vars.rxdata[0][0],10*PHY_vars_UE->lte_frame_parms.samples_per_tti,1,1);
-                  write_output("rxsigF0.m","rxsF0", &PHY_vars_UE->lte_ue_common_vars.rxdataF[0][0],2*PHY_vars_UE->lte_frame_parms.ofdm_symbol_size*nsymb,2,1);
-
-                  if (PHY_vars_UE->lte_frame_parms.nb_antennas_rx>1) {
-                    write_output("rxsig1.m","rxs1", PHY_vars_UE->lte_ue_common_vars.rxdata[1],PHY_vars_UE->lte_frame_parms.samples_per_tti,1,1);
-                    write_output("rxsigF1.m","rxsF1", PHY_vars_UE->lte_ue_common_vars.rxdataF[1],2*PHY_vars_UE->lte_frame_parms.ofdm_symbol_size*nsymb,2,1);
-                  }
-
-                  write_output("dlsch00_ch0.m","dl00_ch0",
-                               &(PHY_vars_UE->lte_ue_common_vars.dl_ch_estimates[eNB_id][0][0]),
-                               PHY_vars_UE->lte_frame_parms.ofdm_symbol_size*nsymb,1,0);
-
-
-
-                  if (PHY_vars_UE->lte_frame_parms.nb_antennas_rx>1)
-                    write_output("dlsch01_ch0.m","dl01_ch0",
-                                 &(PHY_vars_UE->lte_ue_common_vars.dl_ch_estimates[eNB_id][1][0]),
-                                 PHY_vars_UE->lte_frame_parms.ofdm_symbol_size*nsymb/2,1,1);
-
-                  if (PHY_vars_eNB->lte_frame_parms.nb_antennas_tx>1)
-                    write_output("dlsch10_ch0.m","dl10_ch0",
-                                 &(PHY_vars_UE->lte_ue_common_vars.dl_ch_estimates[eNB_id][2][0]),
-                                 PHY_vars_UE->lte_frame_parms.ofdm_symbol_size*nsymb/2,1,1);
-
-                  if ((PHY_vars_UE->lte_frame_parms.nb_antennas_rx>1) && (PHY_vars_eNB->lte_frame_parms.nb_antennas_tx>1))
-                    write_output("dlsch11_ch0.m","dl11_ch0",
-                                 &(PHY_vars_UE->lte_ue_common_vars.dl_ch_estimates[eNB_id][3][0]),
-                                 PHY_vars_UE->lte_frame_parms.ofdm_symbol_size*nsymb/2,1,1);
-
-                  // exit(-1);
-                  //dlsch_vars
-                  dump_dlsch2(PHY_vars_UE,eNB_id,coded_bits_per_codeword);
-                  dump_dlsch2(PHY_vars_UE,eNB_id_i,coded_bits_per_codeword);
-                  write_output("dlsch_e.m","e",PHY_vars_eNB->dlsch_eNB[0][0]->e,coded_bits_per_codeword,1,4);
-
-                  //pdcch_vars
-                  write_output("pdcchF0_ext.m","pdcchF_ext", PHY_vars_UE->lte_ue_pdcch_vars[eNB_id]->rxdataF_ext[0],2*3*PHY_vars_UE->lte_frame_parms.ofdm_symbol_size,1,1);
-                  write_output("pdcch00_ch0_ext.m","pdcch00_ch0_ext",PHY_vars_UE->lte_ue_pdcch_vars[eNB_id]->dl_ch_estimates_ext[0],300*3,1,1);
-
-                  write_output("pdcch_rxF_comp0.m","pdcch0_rxF_comp0",PHY_vars_UE->lte_ue_pdcch_vars[eNB_id]->rxdataF_comp[0],4*300,1,1);
-                  write_output("pdcch_rxF_llr.m","pdcch_llr",PHY_vars_UE->lte_ue_pdcch_vars[eNB_id]->llr,2400,1,4);
-
-                }
-
-              }
-            }
-          }
-
-          // calculate uncoded BLER
-          uncoded_ber=0;
-
-          for (i=0; i<coded_bits_per_codeword; i++)
-            if (PHY_vars_eNB->dlsch_eNB[0][0]->e[i] != (PHY_vars_UE->lte_ue_dlsch_vars[0]->llr[0][i]<0)) {
-              uncoded_ber_bit[i] = 1;
-              uncoded_ber++;
-            } else
-              uncoded_ber_bit[i] = 0;
-
-          uncoded_ber/=coded_bits_per_codeword;
-          avg_ber += uncoded_ber;
-
-          //imran
-          if(abstx) {
-            if (trials<10 && round_eNB==0 && transmission_mode==5) {
-              for (iii=0; iii<NB_RB; iii++) {
-                //fprintf(csv_fd, "%d, %d", (PHY_vars_UE->lte_ue_dlsch_vars[eNB_id]->pmi_ext[iii]),(PHY_vars_UE->lte_ue_dlsch_vars[eNB_id_i]->pmi_ext[iii]));
-                msg(" %x",(PHY_vars_UE->lte_ue_dlsch_vars[eNB_id]->pmi_ext[iii]));
-                // msg("Opposite Extracted pmi %x\n",(PHY_vars_UE->lte_ue_dlsch_vars[eNB_id_i]->pmi_ext[iii]));
-
-              }
-            }
-          }
-
-
-          PHY_vars_UE->dlsch_ue[0][0]->rnti = n_rnti;
-          dlsch_unscrambling(&PHY_vars_UE->lte_frame_parms,
-                             PHY_vars_UE->lte_ue_pdcch_vars[0]->num_pdcch_symbols,
-                             PHY_vars_UE->dlsch_ue[0][0],
-                             coded_bits_per_codeword,
-                             PHY_vars_UE->lte_ue_dlsch_vars[eNB_id]->llr[0],
-                             0,
-                             subframe<<1);
-
-
-          ret_eNB = dlsch_decoding(PHY_vars_UE->lte_ue_dlsch_vars[eNB_id]->llr[0],
-                                   &PHY_vars_UE->lte_frame_parms,
-                                   PHY_vars_UE->dlsch_ue[0][0],
-                                   subframe,
-                                   PHY_vars_UE->lte_ue_pdcch_vars[0]->num_pdcch_symbols);
-
-#ifdef XFORMS
-          do_forms(form,
-                   &PHY_vars_UE->lte_frame_parms,
-                   PHY_vars_UE->lte_ue_common_vars.dl_ch_estimates_time,
-                   PHY_vars_UE->lte_ue_common_vars.dl_ch_estimates[eNB_id],
-                   PHY_vars_UE->lte_ue_common_vars.rxdata,
-                   PHY_vars_UE->lte_ue_common_vars.rxdataF,
-                   PHY_vars_UE->lte_ue_dlsch_vars[0]->rxdataF_comp[0],
-                   PHY_vars_UE->lte_ue_dlsch_vars[3]->rxdataF_comp[0],
-                   PHY_vars_UE->lte_ue_dlsch_vars[0]->dl_ch_rho_ext[0],
-                   PHY_vars_UE->lte_ue_dlsch_vars[0]->llr[0],coded_bits_per_codeword);
-#endif
-
-          if (ret_eNB <= MAX_TURBO_ITERATIONS) {
-
-            if (n_frames==1)
-              printf("No DLSCH errors found\n");
-
-            //      exit(-1);
-            if (fix_rounds==0)
-              round_eNB=5;
-            else
-              round_eNB++;
-          } else {
-            errs_eNB[round_eNB]++;
-
-            if (n_frames==1) {
-              //if ((n_frames==1) || (SNR>=30)) {
-              printf("DLSCH errors found, uncoded ber %f\n",uncoded_ber);
-
-              for (s=0; s<PHY_vars_UE->dlsch_ue[0][0]->harq_processes[0]->C; s++) {
-                if (s<PHY_vars_UE->dlsch_ue[0][0]->harq_processes[0]->Cminus)
-                  Kr = PHY_vars_UE->dlsch_ue[0][0]->harq_processes[0]->Kminus;
-                else
-                  Kr = PHY_vars_UE->dlsch_ue[0][0]->harq_processes[0]->Kplus;
-
-                Kr_bytes = Kr>>3;
-
-                printf("Decoded_output (Segment %d):\n",s);
-
-                for (i=0; i<Kr_bytes; i++)
-                  printf("%d : %x (%x)\n",i,PHY_vars_UE->dlsch_ue[0][0]->harq_processes[0]->c[s][i],PHY_vars_UE->dlsch_ue[0][0]->harq_processes[0]->c[s][i]^PHY_vars_eNB->dlsch_eNB[0][0]->harq_processes[0]->c[s][i]);
-              }
-
-              write_output("rxsig0.m","rxs0", &PHY_vars_UE->lte_ue_common_vars.rxdata[0][0],10*PHY_vars_UE->lte_frame_parms.samples_per_tti,1,1);
-              write_output("rxsigF0.m","rxsF0", &PHY_vars_UE->lte_ue_common_vars.rxdataF[0][0],2*PHY_vars_UE->lte_frame_parms.ofdm_symbol_size*nsymb,2,1);
-
-              if (PHY_vars_UE->lte_frame_parms.nb_antennas_rx>1) {
-                write_output("rxsig1.m","rxs1", PHY_vars_UE->lte_ue_common_vars.rxdata[1],PHY_vars_UE->lte_frame_parms.samples_per_tti,1,1);
-                write_output("rxsigF1.m","rxsF1", PHY_vars_UE->lte_ue_common_vars.rxdataF[1],2*PHY_vars_UE->lte_frame_parms.ofdm_symbol_size*nsymb,2,1);
-              }
-
-              write_output("dlsch00_ch0.m","dl00_ch0",
-                           &(PHY_vars_UE->lte_ue_common_vars.dl_ch_estimates[eNB_id][0][0]),
-                           PHY_vars_UE->lte_frame_parms.ofdm_symbol_size*nsymb/2,1,1);
-
-              if (PHY_vars_UE->lte_frame_parms.nb_antennas_rx>1)
-                write_output("dlsch01_ch0.m","dl01_ch0",
-                             &(PHY_vars_UE->lte_ue_common_vars.dl_ch_estimates[eNB_id][1][0]),
-                             PHY_vars_UE->lte_frame_parms.ofdm_symbol_size*nsymb/2,1,1);
-
-              if (PHY_vars_eNB->lte_frame_parms.nb_antennas_tx>1)
-                write_output("dlsch10_ch0.m","dl10_ch0",
-                             &(PHY_vars_UE->lte_ue_common_vars.dl_ch_estimates[eNB_id][2][0]),
-                             PHY_vars_UE->lte_frame_parms.ofdm_symbol_size*nsymb/2,1,1);
-
-              if ((PHY_vars_UE->lte_frame_parms.nb_antennas_rx>1) && (PHY_vars_eNB->lte_frame_parms.nb_antennas_tx>1))
-                write_output("dlsch11_ch0.m","dl11_ch0",
-                             &(PHY_vars_UE->lte_ue_common_vars.dl_ch_estimates[eNB_id][3][0]),
-                             PHY_vars_UE->lte_frame_parms.ofdm_symbol_size*nsymb/2,1,1);
-
-              //dlsch_vars
-              dump_dlsch2(PHY_vars_UE,eNB_id,coded_bits_per_codeword);
-              write_output("dlsch_e.m","e",PHY_vars_eNB->dlsch_eNB[0][0]->e,coded_bits_per_codeword,1,4);
-              write_output("dlsch_ber_bit.m","ber_bit",uncoded_ber_bit,coded_bits_per_codeword,1,0);
-              write_output("dlsch_eNB_w.m","w",PHY_vars_eNB->dlsch_eNB[0][0]->harq_processes[0]->w[0],3*(tbs+64),1,4);
-              write_output("dlsch_UE_w.m","w",PHY_vars_UE->dlsch_ue[0][0]->harq_processes[0]->w[0],3*(tbs+64),1,0);
-
-
-              exit(-1);
-            }
-
-            //      printf("round %d errors %d/%d\n",round,errs[round],trials);
-
-
-            round_eNB++;
-
-            if (n_frames==1)
-              printf("DLSCH in error in round %d\n",round_eNB);
-
-          }
-
-          //********************** DL part end
-
-          //********************** DL Channel Feedback
-
-          //****************************** UL Decoding Proc
-          //modif start UL
-          SNRmeas = 10*log10(((double)signal_energy((int*)&PHY_vars_eNB->lte_eNB_common_vars.rxdata[0][0][160+(PHY_vars_eNB->lte_frame_parms.samples_per_tti*subframe_UL)],
-                              OFDM_SYMBOL_SIZE_COMPLEX_SAMPLES/2))/((double)signal_energy((int*)&PHY_vars_eNB->lte_eNB_common_vars.rxdata[0][0][160+(PHY_vars_eNB->lte_frame_parms.samples_per_tti*(1+subframe_UL))],
-                                  OFDM_SYMBOL_SIZE_COMPLEX_SAMPLES/2)) - 1);
-
-          if (n_frames==1) {
-            printf("SNRmeas %f\n",SNRmeas);
-
-            write_output("rxsig0_UE.m","rxs0_UE", &PHY_vars_eNB->lte_eNB_common_vars.rxdata[0][0][PHY_vars_eNB->lte_frame_parms.samples_per_tti*subframe_UL],PHY_vars_eNB->lte_frame_parms.samples_per_tti,1,1);
-            write_output("rxsig1_UE.m","rxs1_UE", &PHY_vars_eNB->lte_eNB_common_vars.rxdata[0][0][PHY_vars_eNB->lte_frame_parms.samples_per_tti*subframe_UL],PHY_vars_eNB->lte_frame_parms.samples_per_tti,1,1);
-          }
-
-          //write_output("rxsig0_UE.m","rxs0_UE", &PHY_vars_eNB->lte_eNB_common_vars.rxdata[0][0][PHY_vars_eNB->lte_frame_parms.samples_per_tti*subframe_UL],PHY_vars_eNB->lte_frame_parms.samples_per_tti,1,1);//b
-
-#ifndef OFDMA_ULSCH
-          remove_7_5_kHz(PHY_vars_eNB,subframe_UL<<1);
-          remove_7_5_kHz(PHY_vars_eNB,1+(subframe_UL<<1));
-#endif
-
-          for (l=subframe_UL*PHY_vars_UE->lte_frame_parms.symbols_per_tti; l<((1+subframe_UL)*PHY_vars_UE->lte_frame_parms.symbols_per_tti); l++) {
-
-            slot_fep_ul(&PHY_vars_eNB->lte_frame_parms,
-                        &PHY_vars_eNB->lte_eNB_common_vars,
-                        l%(PHY_vars_eNB->lte_frame_parms.symbols_per_tti/2),
-                        l/(PHY_vars_eNB->lte_frame_parms.symbols_per_tti/2),
-                        0,
-                        0);
-          }
-
-          PHY_vars_eNB->ulsch_eNB[0]->cyclicShift = cyclic_shift;// cyclic shift for DMRS
-          rx_ulsch(PHY_vars_eNB,
-                   subframe_UL,
-                   0,  // this is the effective sector id
-                   0,  // this is the UE_id
-                   PHY_vars_eNB->ulsch_eNB,
-                   cooperation_flag);
-
-
-          ret_UE= ulsch_decoding(PHY_vars_eNB,
-                                 0, // UE_id
-                                 subframe_UL,
-                                 control_only_flag,
-                                 1  // Nbundled
-                                );
-
-          if (ret_UE <= MAX_TURBO_ITERATIONS) {
-            if (n_frames==1) {
-              printf("No ULSCH errors found, o_ACK[0]= %d\n",PHY_vars_eNB->ulsch_eNB[0]->o_ACK[0]);
-              dump_ulsch(PHY_vars_eNB);
-              //      exit(-1);
-            }
-
-            round_UE=5;
-
-          } else {
-            errs_UE[round_UE]++;
-
-            if (n_frames==1) {
-              printf("ULSCH errors found o_ACK[0]= %d\n",PHY_vars_eNB->ulsch_eNB[0]->o_ACK[0]);
-              dump_ulsch(PHY_vars_eNB);
-              exit(-1);
-            }
-
-            //      printf("round %d errors %d/%d\n",round,errs[round],trials);
-            round_UE++;
-
-            if (n_frames==1) {
-              printf("ULSCH in error in round %d\n",round_UE);
-            }
-          }  // ulsch error
-
-          //do_calibration(PHY_vars_eNB,subframe_UL);
-          //if (trials>0){
-          //  for(aa=0;aa<12;aa++)
-          //  printf("recu[%d]=%d \n",aa,(char)(PHY_vars_eNB->ulsch_eNB[0]->harq_processes[harq_pid]->b[aa]));
-          //exit(-1);
-          //  }
-
-          if (trials<=n_K) {
-
-            do_quan(PHY_vars_eNB,
-                    nsymb,
-                    pilot1-1,
-                    quant_v,
-                    drs_ch_estimates,
-                    UE_id);
-
-
-          }
-
-          if (trials <= n_K) {
-
-            for (aa=0; aa<1; aa++)
-              for (k=0; k<2*300; k++) {
-                K_dl_ch_estimates[trials][aa][k] = dl_ch_estimates[k+aa*2*300];
-                K_drs_ch_estimates[trials][aa][k] = drs_ch_estimates[k+aa*2*300];
-                //K_drs_ch_estimates[trials][aa][k]=((short *)PHY_vars_eNB->lte_eNB_ulsch_vars[0]->drs_ch_estimates[UE_id][aa])[k];
-                //K_dl_ch_estimates[trials][aa][k]=((short *)PHY_vars_UE->lte_ue_common_vars.dl_ch_estimates[0][aa])[k];
-              }
-
-          } else if ( (trials>n_K) && (P_eNb_active==0)) {
-
-
-            write_output("vdl0.m","vudl0", K_dl_ch_estimates[0][0],300,1,1);
-            write_output("vdrs0.m","vudrs0", K_drs_ch_estimates[0][0],300,1,1);
-
-            write_output("vdl1.m","vudl1", K_dl_ch_estimates[1][0],300,1,1);
-            write_output("vdrs1.m","vudrs1", K_drs_ch_estimates[1][0],300,1,1);
-
-            write_output("vdl2.m","vudl2", K_dl_ch_estimates[2][0],300,1,1);
-            write_output("vdrs2.m","vudrs2", K_drs_ch_estimates[2][0],300,1,1);
-
-            write_output("vdl3.m","vudl3", K_dl_ch_estimates[3][0],300,1,1);
-            write_output("vdrs3.m","vudrs3", K_drs_ch_estimates[3][0],300,1,1);
-
-            write_output("vdl4.m","vudl4", K_dl_ch_estimates[4][0],300,1,1);
-            write_output("vdrs4.m","vudrs4", K_drs_ch_estimates[4][0],300,1,1);
-
-            write_output("vdl5.m","vudl5", K_dl_ch_estimates[5][0],300,1,1);
-            write_output("vdrs5.m","vudrs5", K_drs_ch_estimates[5][0],300,1,1);
-
-            write_output("vdl6.m","vudl6", K_dl_ch_estimates[6][0],300,1,1);
-            write_output("vdrs6.m","vudrs6", K_drs_ch_estimates[6][0],300,1,1);
-
-            write_output("vdl7.m","vudl7", K_dl_ch_estimates[7][0],300,1,1);
-            write_output("vdrs7.m","vudrs7", K_drs_ch_estimates[7][0],300,1,1);
-
-            write_output("vdl8.m","vudl8", K_dl_ch_estimates[8][0],300,1,1);
-            write_output("vdrs8.m","vudrs8", K_drs_ch_estimates[8][0],300,1,1);
-
-            write_output("vdl9.m","vudl9", K_dl_ch_estimates[9][0],300,1,1);
-            write_output("vdrs9.m","vudrs9", K_drs_ch_estimates[9][0],300,1,1);
-
-            write_output("vdl10.m","vudl10", K_dl_ch_estimates[10][0],300,1,1);
-            write_output("vdrs10.m","vudrs10", K_drs_ch_estimates[10][0],300,1,1);
-
-            write_output("vdl11.m","vudl11", K_dl_ch_estimates[11][0],300,1,1);
-            write_output("vdrs11.m","vudrs11", K_drs_ch_estimates[11][0],300,1,1);
-
-            write_output("vdl12.m","vudl12", K_dl_ch_estimates[12][0],300,1,1);
-            write_output("vdrs12.m","vudrs12", K_drs_ch_estimates[12][0],300,1,1);
-
-            write_output("vdl13.m","vudl13", K_dl_ch_estimates[13][0],300,1,1);
-            write_output("vdrs13.m","vudrs13", K_drs_ch_estimates[13][0],300,1,1);
-
-            write_output("vdl14.m","vudl14", K_dl_ch_estimates[14][0],300,1,1);
-            write_output("vdrs14.m","vudrs14", K_drs_ch_estimates[14][0],300,1,1);
-
-            do_calibration (K_dl_ch_estimates,
-                            K_drs_ch_estimates,
-                            PeNb_factor,
-                            PHY_vars_eNB->lte_frame_parms.ofdm_symbol_size,
-                            n_K);
-            P_eNb_active=1;
-
-            write_output("cal1.m","cal", PeNb_factor[0],600,1,8);
-
-
-
-            write_output("aue1.m","aue", drs_ch_estimates,600,1,1);
-            write_output("aenb1.m","aenb", dl_ch_estimates,600,1,1);
-            write_output("vulb.m","vul", PHY_vars_eNB->lte_eNB_ulsch_vars[0]->drs_ch_estimates[UE_id][0],5000,1,1);
-            write_output("vdlb.m","vdl", PHY_vars_UE->lte_ue_common_vars.dl_ch_estimates[eNB_id][0], 5000,1,1);
-
-            //exit(-1);
-
-          }
-
-          if(trials>n_K+1) {
-            //write_output("vdl15.m","vudl15", PHY_vars_UE->lte_ue_common_vars.dl_ch_estimates[eNB_id][0],300,1,1);
-            //write_output("vdrs15.m","vudrs15", PHY_vars_eNB->lte_eNB_ulsch_vars[0]->drs_ch_estimates[UE_id][0],300,1,1);
-            //exit(-1);
-          }
-
-          //modif end UL
-
-        }  //round
-
-        //if ((errs_eNB[0]>=100) && (trials>(n_frames/2)) && (errs_UE[0]>=100) )
-        //  break;  //b
-
-      }   //trials
-
-      printf("\n*******DL*************SNR = %f dB (tx_lev %f, sigma2_dB %f)************DL************\n",
-             SNR,
-             (double)tx_lev_dB+10*log10(PHY_vars_UE->lte_frame_parms.ofdm_symbol_size/(NB_RB*12)),
-             sigma2_dB);
-
-      printf("Errors (%d/%d %d/%d %d/%d %d/%d), Pe = (%e,%e,%e,%e), dci_errors %d/%d, Pe = %e => effective rate %f (%f), normalized delay %f (%f), uncoded_ber %f\n",
-             errs_eNB[0],
-             round_trials_eNB[0],
-             errs_eNB[1],
-             round_trials_eNB[1],
-             errs_eNB[2],
-             round_trials_eNB[2],
-             errs_eNB[3],
-             round_trials_eNB[3],
-             (double)errs_eNB[0]/(round_trials_eNB[0]),
-             (double)errs_eNB[1]/(round_trials_eNB[1]),
-             (double)errs_eNB[2]/(round_trials_eNB[2]),
-             (double)errs_eNB[3]/(round_trials_eNB[3]),
-             dci_errors,
-             round_trials_eNB[0],
-             (double)dci_errors/(round_trials_eNB[0]),
-             rate*((double)(round_trials_eNB[0]-dci_errors)/((double)round_trials_eNB[0] + round_trials_eNB[1] + round_trials_eNB[2] + round_trials_eNB[3])),
-             rate,
-             (1.0*(round_trials_eNB[0]-errs_eNB[0])+2.0*(round_trials_eNB[1]-errs_eNB[1])+3.0*(round_trials_eNB[2]-errs_eNB[2])+4.0*(round_trials_eNB[3]-errs_eNB[3]))/((double)round_trials_eNB[0])/
-             (double)PHY_vars_eNB->dlsch_eNB[0][0]->harq_processes[0]->TBS,
-             (1.0*(round_trials_eNB[0]-errs_eNB[0])+2.0*(round_trials_eNB[1]-errs_eNB[1])+3.0*(round_trials_eNB[2]-errs_eNB[2])+4.0*(round_trials_eNB[3]-errs_eNB[3]))/((double)round_trials_eNB[0]),
-             avg_ber/round_trials_eNB[0]);
-
-      fprintf(bler_fd,"%f;%d;%d;%f;%d;%d;%d;%d;%d;%d;%d;%d;%d;%f\n",
-              SNR,
-              mcs_eNB,
-              PHY_vars_eNB->dlsch_eNB[0][0]->harq_processes[0]->TBS,
-              rate,
-              errs_eNB[0],
-              round_trials_eNB[0],
-              errs_eNB[1],
-              round_trials_eNB[1],
-              errs_eNB[2],
-              round_trials_eNB[2],
-              errs_eNB[3],
-              round_trials_eNB[3],
-              dci_errors,
-              avg_ber/round_trials_eNB[0]);
-
-      fprintf(tikz_fd,"(%f,%f)", SNR, (float)errs_eNB[0]/round_trials_eNB[0]);
-
-      if(abstx) { //ABSTRACTION
-        blerr= (double)errs_eNB[0]/(round_trials_eNB[0]);
-        fprintf(csv_fd,"%e;\n",blerr);
-      } //ABStraction
-
-      //modif start UL
-      printf("\n++++++UL+++++++++++++SNR = %f dB (tx_UE_lev %f, sigma2_UE_dB %f)++++++++++++UL+++++++++++\n",
-             SNR,
-             (double)tx_lev_UE_dB+10*log10(PHY_vars_UE->lte_frame_parms.ofdm_symbol_size/(nb_rb_UE*12)),
-             sigma2_UE_dB);
-
-      printf("Errors (%d/%d %d/%d %d/%d %d/%d), Pe = (%e,%e,%e,%e) => effective rate_UL %f (%f), normalized delay %f (%f)\n",
-             errs_UE[0],
-             round_trials_UE[0],
-             errs_UE[1],
-             round_trials_UE[1],
-             errs_UE[2],
-             round_trials_UE[2],
-             errs_UE[3],
-             round_trials_UE[3],
-             (double)errs_UE[0]/(round_trials_UE[0]),
-             (double)errs_UE[1]/(round_trials_UE[1]),
-             (double)errs_UE[2]/(round_trials_UE[2]),
-             (double)errs_UE[3]/(round_trials_UE[3]),
-             rate_UE*((double)(round_trials_UE[0])/((double)round_trials_UE[0] + round_trials_UE[1] + round_trials_UE[2] + round_trials_UE[3])),
-             rate_UE,
-             (1.0*(round_trials_UE[0]-errs_UE[0])+2.0*(round_trials_UE[1]-errs_UE[1])+3.0*(round_trials_UE[2]-errs_UE[2])+4.0*(round_trials_UE[3]-errs_UE[3]))/((double)round_trials_UE[0])/
-             (double)PHY_vars_eNB->dlsch_eNB[0][0]->harq_processes[0]->TBS,
-             (1.0*(round_trials_UE[0]-errs_UE[0])+2.0*(round_trials_UE[1]-errs_UE[1])+3.0*(round_trials_UE[2]-errs_UE[2])+4.0*(round_trials_UE[3]-errs_UE[3]))/((double)round_trials_UE[0]));
-
-      fprintf(bler_fd,"%f;%d;%d;%f;%d;%d;%d;%d;%d;%d;%d;%d\n",
-              SNR,
-              mcs_UE,
-              PHY_vars_eNB->dlsch_eNB[0][0]->harq_processes[0]->TBS,
-              rate_UE,
-              errs_UE[0],
-              round_trials_UE[0],
-              errs_UE[1],
-              round_trials_UE[1],
-              errs_UE[2],
-              round_trials_UE[2],
-              errs_UE[3],
-              round_trials_UE[3]);
-
-      if (((double)errs_UE[0]/(round_trials_UE[0]))<1e-2 && ((double)errs_UE[0]/(round_trials_UE[0]))<1e-3)
-        break;
-
-      //modif end UL
-
-    }// SNR
-
-  } //ch_realization
-
-
-  fclose(bler_fd);
-  fprintf(tikz_fd,"};\n");
-  fclose(tikz_fd);
-
-  if (input_trch_file==1)
-    fclose(input_trch_fd);
-
-  if (input_file==1)
-    fclose(input_fd);
-
-  if(abstx) { // ABSTRACTION
-    fprintf(csv_fd,"];");
-    fclose(csv_fd);
-  }
-
-  printf("Freeing dlsch structures\n");
-
-  for (i=0; i<2; i++) {
-    printf("eNB %d\n",i);
-    free_eNB_dlsch(PHY_vars_eNB->dlsch_eNB[0][i]);
-    printf("UE %d\n",i);
-    free_ue_dlsch(PHY_vars_UE->dlsch_ue[0][i]);
-  }
-
-
-#ifdef IFFT_FPGA
-  printf("Freeing transmit signals\n");
-  free(txdataF2[0]);
-  free(txdataF2[1]);
-  free(txdataF2);
-  free(txdata[0]);
-  free(txdata[1]);
-  free(txdata);
-  //modif start UL
-  free(txdataF2_UE[0]);
-  free(txdataF2_UE[1]);
-  free(txdataF2_UE);
-  free(txdata_UE[0]);
-  free(txdata_UE[1]);
-  free(txdata_UE);
-  //modif end UL
-#endif
-
-  printf("Freeing channel I/O\n");
-
-  for (i=0; i<2; i++) {
-    free(s_re[i]);
-    free(s_im[i]);
-    free(r_re[i]);
-    free(r_im[i]);
-    //modif start UL
-    free(s_re_UE[i]);
-    free(s_im_UE[i]);
-    free(r_re_UE[i]);
-    free(r_im_UE[i]);
-    //modif end UL
-  }
-
-  free(s_re);
-  free(s_im);
-  free(r_re);
-  free(r_im);
-
-  //modif start UL
-  free(s_re_UE);
-  free(s_im_UE);
-  free(r_re_UE);
-  free(r_im_UE);
-  //modif end UL
-  //  lte_sync_time_free();
-
-  return(0);
-}
-
diff --git a/openair1/SIMULATION/LTE_RECIPROCITY/recsim_eNBUE.c b/openair1/SIMULATION/LTE_RECIPROCITY/recsim_eNBUE.c
deleted file mode 100644
index fdf56deffcca48bc36ce3ddfba5ed5f776b5af04..0000000000000000000000000000000000000000
--- a/openair1/SIMULATION/LTE_RECIPROCITY/recsim_eNBUE.c
+++ /dev/null
@@ -1,2906 +0,0 @@
-/*******************************************************************************
-    OpenAirInterface
-    Copyright(c) 1999 - 2014 Eurecom
-
-    OpenAirInterface is free software: you can redistribute it and/or modify
-    it under the terms of the GNU General Public License as published by
-    the Free Software Foundation, either version 3 of the License, or
-    (at your option) any later version.
-
-
-    OpenAirInterface is distributed in the hope that it will be useful,
-    but WITHOUT ANY WARRANTY; without even the implied warranty of
-    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
-    GNU General Public License for more details.
-
-    You should have received a copy of the GNU General Public License
-    along with OpenAirInterface.The full GNU General Public License is
-   included in this distribution in the file called "COPYING". If not,
-   see <http://www.gnu.org/licenses/>.
-
-  Contact Information
-  OpenAirInterface Admin: openair_admin@eurecom.fr
-  OpenAirInterface Tech : openair_tech@eurecom.fr
-  OpenAirInterface Dev  : openair4g-devel@eurecom.fr
-
-  Address      : Eurecom, Campus SophiaTech, 450 Route des Chappes, CS 50193 - 06904 Biot Sophia Antipolis cedex, FRANCE
-
- *******************************************************************************/
-//cd Desktop/openair4G/trunk/openair1/SIMULATION/LTE_RECIPROCITY/
-#include <string.h>
-#include <math.h>
-#include <unistd.h>
-#include <execinfo.h>
-#include <signal.h>
-
-#include "SIMULATION/TOOLS/defs.h"
-#include "PHY/types.h"
-#include "PHY/defs.h"
-#include "PHY/vars.h"
-#include "MAC_INTERFACE/vars.h"
-#ifdef IFFT_FPGA
-#include "PHY/LTE_REFSIG/mod_table.h"
-#endif
-
-#include "ARCH/CBMIMO1/DEVICE_DRIVER/vars.h"
-#include "SCHED/defs.h"
-#include "SCHED/vars.h"
-#include "LAYER2/MAC/vars.h"
-
-#include "OCG_vars.h"
-
-#include "coeffs.h"
-
-#ifdef XFORMS
-#include "forms.h"
-#include "../../USERSPACE_TOOLS/SCOPE/lte_scope.h"
-#endif
-
-//#define AWGN
-//#define NO_DCI
-
-#define BW 7.68
-
-extern uint16_t beta_ack[16],beta_ri[16],beta_cqi[16];
-extern unsigned short dftsizes[33];
-extern short *ul_ref_sigs[30][2][33];
-
-PHY_VARS_eNB *PHY_vars_eNB[2];
-PHY_VARS_UE *PHY_vars_UE[2];
-
-void handler(int sig)
-{
-  void *array[10];
-  size_t size;
-
-  // get void*'s for all entries on the stack
-  size = backtrace(array, 10);
-
-  // print out all the frames to stderr
-  fprintf(stderr, "Error: signal %d:\n", sig);
-  backtrace_symbols_fd(array, size, 2);
-  exit(1);
-}
-
-
-#ifdef XFORMS
-void do_forms(FD_lte_scope *form, LTE_DL_FRAME_PARMS *frame_parms, short **channel, short **channel_f, short **rx_sig, short **rx_sig_f, short *dlsch_comp, short* dlsch_comp_i, short* dlsch_rho,
-              short *dlsch_llr, int coded_bits_per_codeword)
-{
-
-  int i,j,ind,k,s;
-
-  float Re,Im;
-  float mag_sig[NB_ANTENNAS_RX*4*NUMBER_OF_OFDM_CARRIERS*NUMBER_OF_OFDM_SYMBOLS_PER_SLOT],
-        sig_time[NB_ANTENNAS_RX*4*NUMBER_OF_OFDM_CARRIERS*NUMBER_OF_OFDM_SYMBOLS_PER_SLOT],
-        sig2[FRAME_LENGTH_COMPLEX_SAMPLES],
-        time2[FRAME_LENGTH_COMPLEX_SAMPLES],
-        I[25*12*11*4], Q[25*12*11*4],
-        *llr,*llr_time;
-
-  float avg, cum_avg;
-
-  llr = malloc(coded_bits_per_codeword*sizeof(float));
-  llr_time = malloc(coded_bits_per_codeword*sizeof(float));
-
-  // Channel frequency response
-  cum_avg = 0;
-  ind = 0;
-
-  for (j=0; j<4; j++) {
-    for (i=0; i<frame_parms->nb_antennas_rx; i++) {
-      for (k=0; k<NUMBER_OF_OFDM_CARRIERS*7; k++) {
-        sig_time[ind] = (float)ind;
-        Re = (float)(channel_f[(j<<1)+i][2*k]);
-        Im = (float)(channel_f[(j<<1)+i][2*k+1]);
-        //mag_sig[ind] = (short) rand();
-        mag_sig[ind] = (short)10*log10(1.0+((double)Re*Re + (double)Im*Im));
-        cum_avg += (short)sqrt((double)Re*Re + (double)Im*Im) ;
-        ind++;
-      }
-
-      //      ind+=NUMBER_OF_OFDM_CARRIERS/4; // spacing for visualization
-    }
-  }
-
-  avg = cum_avg/NUMBER_OF_USEFUL_CARRIERS;
-
-  //fl_set_xyplot_ybounds(form->channel_f,30,70);
-  fl_set_xyplot_data(form->channel_f,sig_time,mag_sig,ind,"","","");
-
-
-
-  // channel_t_re = rx_sig_f[0]
-  //for (i=0; i<FRAME_LENGTH_COMPLEX_SAMPLES_NO_PREFIX; i++)  {
-  for (i=0; i<NUMBER_OF_OFDM_CARRIERS*frame_parms->symbols_per_tti/2; i++)  {
-    sig2[i] = 10*log10(1.0+(double) ((rx_sig_f[0][4*i])*(rx_sig_f[0][4*i])+(rx_sig_f[0][4*i+1])*(rx_sig_f[0][4*i+1])));
-    time2[i] = (float) i;
-  }
-
-  //fl_set_xyplot_ybounds(form->channel_t_re,10,90);
-  fl_set_xyplot_data(form->channel_t_re,time2,sig2,NUMBER_OF_OFDM_CARRIERS*frame_parms->symbols_per_tti,"","","");
-  //fl_set_xyplot_data(form->channel_t_re,time2,sig2,FRAME_LENGTH_COMPLEX_SAMPLES_NO_PREFIX,"","","");
-
-
-  // channel_t_im = rx_sig[0]
-
-  for (i=0; i<FRAME_LENGTH_COMPLEX_SAMPLES; i++)  {
-    sig2[i] = 10*log10(1.0+(double) ((rx_sig[0][2*i])*(rx_sig[0][2*i])+(rx_sig[0][2*i+1])*(rx_sig[0][2*i+1])));
-    time2[i] = (float) i;
-  }
-
-  //fl_set_xyplot_ybounds(form->channel_t_im,0,100);
-  //fl_set_xyplot_data(form->channel_t_im,&time2[640*12*6],&sig2[640*12*6],640*12,"","","");
-  fl_set_xyplot_data(form->channel_t_im,time2,sig2,FRAME_LENGTH_COMPLEX_SAMPLES,"","","");
-  //}
-
-
-  // DLSCH LLR
-  for(i=0; i<coded_bits_per_codeword; i++) {
-    llr[i] = (float) dlsch_llr[i];
-    llr_time[i] = (float) i;
-  }
-
-  fl_set_xyplot_data(form->demod_out,llr_time,llr,coded_bits_per_codeword,"","","");
-  fl_set_xyplot_ybounds(form->demod_out,-1000,1000);
-
-  // DLSCH I/Q
-  j=0;
-
-  for (s=0; s<frame_parms->symbols_per_tti; s++) {
-    for(i=0; i<12*25; i++) {
-      I[j] = dlsch_comp[(2*25*12*s)+2*i];
-      Q[j] = dlsch_comp[(2*25*12*s)+2*i+1];
-      j++;
-    }
-
-    //if (s==2)
-    //  s=3;
-    //else if (s==5)
-    //  s=6;
-    //else if (s==8)
-    //  s=9;
-  }
-
-  fl_set_xyplot_data(form->scatter_plot,I,Q,j,"","","");
-  fl_set_xyplot_xbounds(form->scatter_plot,-2000,2000);
-  fl_set_xyplot_ybounds(form->scatter_plot,-2000,2000);
-
-  // DLSCH I/Q
-  j=0;
-
-  for (s=0; s<frame_parms->symbols_per_tti; s++) {
-    for(i=0; i<12*25; i++) {
-      I[j] = dlsch_comp_i[(2*25*12*s)+2*i];
-      Q[j] = dlsch_comp_i[(2*25*12*s)+2*i+1];
-      j++;
-    }
-
-  }
-
-  fl_set_xyplot_data(form->scatter_plot1,I,Q,j,"","","");
-  fl_set_xyplot_xbounds(form->scatter_plot1,-2000,2000);
-  fl_set_xyplot_ybounds(form->scatter_plot1,-2000,2000);
-
-  // DLSCH I/Q
-  j=0;
-
-  for (s=0; s<frame_parms->symbols_per_tti; s++) {
-    for(i=0; i<12*25; i++) {
-      I[j] = dlsch_rho[(2*25*12*s)+2*i];
-      Q[j] = dlsch_rho[(2*25*12*s)+2*i+1];
-      j++;
-    }
-
-  }
-
-  fl_set_xyplot_data(form->scatter_plot2,I,Q,j,"","","");
-
-  free(llr);
-  free(llr_time);
-
-}
-#endif
-
-void lte_param_init(unsigned char N_tx, unsigned char N_rx,unsigned char transmission_mode,uint8_t extended_prefix_flag,uint16_t Nid_cell,uint8_t tdd_config,uint8_t N_RB_DL,uint8_t osf)
-{
-
-  LTE_DL_FRAME_PARMS *lte_frame_parms;
-  int i, kk;
-
-  printf("Start lte_param_init\n");
-  PHY_vars_eNB[0] = malloc(sizeof(PHY_VARS_eNB));
-  PHY_vars_eNB[1] = malloc(sizeof(PHY_VARS_eNB));
-  PHY_vars_UE[0] = malloc(sizeof(PHY_VARS_UE));
-  PHY_vars_UE[1] = malloc(sizeof(PHY_VARS_UE));
-  //PHY_config = malloc(sizeof(PHY_CONFIG));
-  mac_xface = malloc(sizeof(MAC_xface));
-
-  randominit(0);
-  set_taus_seed(0);
-
-  lte_frame_parms = &(PHY_vars_eNB[0]->lte_frame_parms);
-
-  lte_frame_parms->N_RB_DL            = N_RB_DL;   //50 for 10MHz and 25 for 5 MHz
-  lte_frame_parms->N_RB_UL            = N_RB_DL;
-  lte_frame_parms->Ncp                = extended_prefix_flag;
-  lte_frame_parms->Nid_cell           = Nid_cell;
-  lte_frame_parms->nushift            = 0;
-  lte_frame_parms->nb_antennas_tx     = N_tx;
-  lte_frame_parms->nb_antennas_rx     = N_rx;
-  lte_frame_parms->phich_config_common.phich_resource         = oneSixth;
-  lte_frame_parms->tdd_config         = tdd_config;
-  lte_frame_parms->frame_type         = 1;
-  //  lte_frame_parms->Csrs = 2;
-  //  lte_frame_parms->Bsrs = 0;
-  //  lte_frame_parms->kTC = 0;44
-  //  lte_frame_parms->n_RRC = 0;
-  lte_frame_parms->mode1_flag = (transmission_mode == 1)? 1 : 0;
-
-  init_frame_parms(lte_frame_parms,osf);
-
-  //copy_lte_parms_to_phy_framing(lte_frame_parms, &(PHY_config->PHY_framing));
-
-  phy_init_top(lte_frame_parms); //allocation
-
-  lte_frame_parms->twiddle_fft      = twiddle_fft;
-  lte_frame_parms->twiddle_ifft     = twiddle_ifft;
-  lte_frame_parms->rev              = rev;
-
-  for (kk=0; kk<2; kk++) {
-
-    PHY_vars_UE[kk]->is_secondary_ue = 0;
-    PHY_vars_UE[kk]->lte_frame_parms = *lte_frame_parms;
-
-    for (i=0; i<3; i++)
-      lte_gold(lte_frame_parms,PHY_vars_UE[kk]->lte_gold_table[i],i);
-
-    phy_init_lte_ue(&PHY_vars_UE[kk]->lte_frame_parms,
-                    &PHY_vars_UE[kk]->lte_ue_common_vars,
-                    PHY_vars_UE[kk]->lte_ue_dlsch_vars,
-                    PHY_vars_UE[kk]->lte_ue_dlsch_vars_SI,
-                    PHY_vars_UE[kk]->lte_ue_dlsch_vars_ra,
-                    PHY_vars_UE[kk]->lte_ue_pbch_vars,
-                    PHY_vars_UE[kk]->lte_ue_pdcch_vars,
-                    PHY_vars_UE[kk]
-                    ,0);
-  }
-
-  PHY_vars_eNB[0]->lte_frame_parms = *lte_frame_parms;
-
-
-  phy_init_lte_top(lte_frame_parms);
-  dump_frame_parms(lte_frame_parms);
-
-  phy_init_lte_eNB(&PHY_vars_eNB[0]->lte_frame_parms,
-                   &PHY_vars_eNB[0]->lte_eNB_common_vars,
-                   PHY_vars_eNB[0]->lte_eNB_ulsch_vars,
-                   0,
-                   PHY_vars_eNB[0],
-                   1,
-                   0);
-
-  PHY_vars_eNB[1]->lte_frame_parms = PHY_vars_eNB[0]->lte_frame_parms;
-
-  phy_init_lte_eNB(&PHY_vars_eNB[1]->lte_frame_parms,
-                   &PHY_vars_eNB[1]->lte_eNB_common_vars,
-                   PHY_vars_eNB[1]->lte_eNB_ulsch_vars,
-                   0,
-                   PHY_vars_eNB[1],
-                   1,
-                   0);
-
-  PHY_vars_eNB[0]->lte_frame_parms.nb_antennas_tx = 1;
-  PHY_vars_eNB[0]->lte_frame_parms.nb_antennas_rx = 1;
-  PHY_vars_eNB[1]->lte_frame_parms.nb_antennas_tx = 1;
-  PHY_vars_eNB[1]->lte_frame_parms.nb_antennas_rx = 1;
-
-  PHY_vars_UE[0]->lte_frame_parms.nb_antennas_tx = 1;
-  PHY_vars_UE[0]->lte_frame_parms.nb_antennas_rx = 1;
-  PHY_vars_UE[1]->lte_frame_parms.nb_antennas_tx = 1;
-  PHY_vars_UE[1]->lte_frame_parms.nb_antennas_rx = 1;
-
-  printf("Done lte_param_init\n");
-}
-
-// Apply phase offsets
-void phase_offsets(double *re_in, double *im_in, double *re_out, double *im_out, int length_sig, double *phase_in, double phase_inc, int pos_neg)
-{
-
-  int k;
-  double tmp_re,tmp_im;
-  double phase;
-
-  for (k=0; k<length_sig; k++) {
-    re_out[k] = 0;
-    im_out[k] = 0;
-  }
-
-  phase = *phase_in;
-
-  for (k=0; k<length_sig; k++) {
-    tmp_re = re_in[k]*cos(phase) - pos_neg*im_in[k]*sin(phase);
-    tmp_im = pos_neg*re_in[k]*sin(phase) + im_in[k]*cos(phase);
-
-    re_out[k] = tmp_re;
-    im_out[k] = tmp_im;
-
-    phase += phase_inc;
-  }
-
-  *phase_in = phase;
-}
-
-
-void real_fir(double *re_in, double *im_in, double *re_out, double *im_out, double *coeffs, int ord_fir, int length_sig)
-{
-  int k, l;
-  double temp1, temp2;
-
-  for (k=0; k<length_sig; k++) {
-    re_out[k] = 0;
-    im_out[k] = 0;
-  }
-
-  for (k=ord_fir; k<length_sig; k++) {
-    temp1 = 0;
-    temp2 = 0;
-
-    for (l=0; l<ord_fir; l++) {
-      temp1 += coeffs[l]*re_in[k-l-1];
-      temp2 += coeffs[l]*im_in[k-l-1];
-    }
-
-    re_out[k] = temp1;
-    im_out[k] = temp2;
-  }
-}
-
-// Modif Channel quantization at UE
-void do_quantization_UE(PHY_VARS_UE *PHY_vars_UE, unsigned int nsymb, uint8_t pilot0, int quant_v, short *dl_ch_estimates, int dec_f)
-{
-  int k;
-  short tx_energy;
-  short dl_ch_estimates_norm[PHY_vars_UE->lte_frame_parms.ofdm_symbol_size*nsymb];
-
-  tx_energy = 8;
-
-  for (k=0; k<PHY_vars_UE->lte_frame_parms.ofdm_symbol_size*nsymb; k++)
-    dl_ch_estimates_norm[k] = ((short *)PHY_vars_UE->lte_ue_common_vars.dl_ch_estimates[0][0])[k]/tx_energy;
-
-  for (k=pilot0*2*512; k<pilot0*2*512+2*300-1; k+=(2*dec_f)) {
-    if (dl_ch_estimates_norm[k] > (quant_v-1))
-      dl_ch_estimates[k-pilot0*2*512] = quant_v-1;
-
-    else if (dl_ch_estimates_norm[k] < (-quant_v))
-      dl_ch_estimates[k-pilot0*2*512] = -quant_v;
-    else
-      dl_ch_estimates[k-pilot0*2*512] = dl_ch_estimates_norm[k];
-
-    if (dl_ch_estimates_norm[k+1]>(quant_v-1))
-      dl_ch_estimates[k+1-pilot0*2*512] = quant_v-1;
-    else if (dl_ch_estimates_norm[k+1] < (-quant_v))
-      dl_ch_estimates[k+1-pilot0*2*512] = -quant_v;
-    else
-      dl_ch_estimates[k+1-pilot0*2*512] = dl_ch_estimates_norm[k+1];
-  }
-
-  /*
-          for(aa=0;aa<PHY_vars_eNB->lte_frame_parms.nb_antennas_tx;aa++) {
-      for (aarx=0;aarx<PHY_vars_UE->lte_frame_parms.nb_antennas_rx;aarx++) {
-        for (k=0;k<PHY_vars_UE->lte_frame_parms.ofdm_symbol_size*nsymb;k++) {
-            dl_ch_estimates_norm[k+aa*PHY_vars_UE->lte_frame_parms.ofdm_symbol_size*nsymb] = ((short *)PHY_vars_UE->lte_ue_common_vars.dl_ch_estimates[0][(aa<<1)+aarx])[k]/tx_energy;
-        }
-            }
-    }
-
-    for(aa=0;aa<PHY_vars_eNB->lte_frame_parms.nb_antennas_tx;aa++) {
-      for (k=pilot[aa]*2*512; k<pilot[aa]*2*512+2*300-1; k+=(2*dec_f)) {
-              if (dl_ch_estimates_norm[k+aa*PHY_vars_UE->lte_frame_parms.ofdm_symbol_size*nsymb] > (quant_v-1))
-                      dl_ch_estimates[k-pilot[aa]*2*512+aa*2*300] = quant_v-1;
-
-        else if (dl_ch_estimates_norm[k+aa*PHY_vars_UE->lte_frame_parms.ofdm_symbol_size*nsymb] < (-quant_v))
-          dl_ch_estimates[k-pilot[aa]*2*512+aa*2*300] = -quant_v;
-        else
-          dl_ch_estimates[k-pilot[aa]*2*512+aa*2*300] = dl_ch_estimates_norm[k+aa*PHY_vars_UE->lte_frame_parms.ofdm_symbol_size*nsymb];
-
-        if (dl_ch_estimates_norm[k+1+aa*PHY_vars_UE->lte_frame_parms.ofdm_symbol_size*nsymb]>(quant_v-1))
-                      dl_ch_estimates[k+1-pilot[aa]*2*512+aa*2*300] = quant_v-1;
-        else if (dl_ch_estimates_norm[k+1+aa*PHY_vars_UE->lte_frame_parms.ofdm_symbol_size*nsymb] < (-quant_v))
-          dl_ch_estimates[k+1-pilot[aa]*2*512+aa*2*300] = -quant_v;
-        else
-          dl_ch_estimates[k+1-pilot[aa]*2*512+aa*2*300] = dl_ch_estimates_norm[k+1+aa*PHY_vars_UE->lte_frame_parms.ofdm_symbol_size*nsymb];
-      }
-    }
-  */
-}
-
-void do_quantization_eNB(PHY_VARS_eNB *PHY_vars_eNB, PHY_VARS_UE *PHY_vars_UE, unsigned int nsymb, uint8_t pilot0, uint8_t pilot1, int quant_v, short *drs_ch_estimates, int UE_id)
-{
-  int k, aa, aarx;
-  short tx_energy;
-  short drs_ch_estimates_norm[2*PHY_vars_eNB->lte_frame_parms.ofdm_symbol_size*nsymb];
-
-  uint8_t pilot[2];
-  pilot[0] = pilot0;
-  pilot[1] = pilot1;
-
-  //for(k=0;k<PHY_vars_eNB->lte_frame_parms.nb_antennas_tx;k++)
-  tx_energy = 8;
-
-  for(aa=0; aa<PHY_vars_eNB->lte_frame_parms.nb_antennas_tx; aa++) {
-    for (aarx=0; aarx<PHY_vars_UE->lte_frame_parms.nb_antennas_rx; aarx++) {
-      for (k=0; k<PHY_vars_UE->lte_frame_parms.ofdm_symbol_size*nsymb; k++) {
-        drs_ch_estimates_norm[k+aa*PHY_vars_UE->lte_frame_parms.ofdm_symbol_size*nsymb] = ((short *)PHY_vars_eNB->lte_eNB_ulsch_vars[0]->drs_ch_estimates[UE_id][aa+aarx])[k]/tx_energy;
-      }
-    }
-  }
-
-  for(aa=0; aa<PHY_vars_eNB->lte_frame_parms.nb_antennas_tx; aa++) {
-    for (k=pilot[aa]*2*300; k<pilot[aa]*2*300+2*300-1; k+=2) {
-      if (drs_ch_estimates_norm[k+aa*PHY_vars_UE->lte_frame_parms.ofdm_symbol_size*nsymb]>(quant_v-1))
-        drs_ch_estimates[k-pilot[aa]*2*300+aa*2*300] = quant_v-1;
-      else if ((drs_ch_estimates_norm[k+aa*2*300*nsymb]) < (-quant_v))
-        drs_ch_estimates[k-pilot[aa]*2*300+aa*2*300] = -quant_v;
-      else
-        drs_ch_estimates[k-pilot[aa]*2*300+aa*2*300] = drs_ch_estimates_norm[k+aa*PHY_vars_UE->lte_frame_parms.ofdm_symbol_size*nsymb];
-
-      if (drs_ch_estimates_norm[k+1+aa*PHY_vars_UE->lte_frame_parms.ofdm_symbol_size*nsymb]>(quant_v-1))
-        drs_ch_estimates[k+1-pilot[aa]*2*300+aa*2*300] = quant_v-1;
-      else if ((drs_ch_estimates_norm[k+1+aa*2*300*nsymb])< (-quant_v))
-        drs_ch_estimates[k+1-pilot[aa]*2*300+aa*2*300] = -quant_v;
-      else
-        drs_ch_estimates[k+1-pilot[aa]*2*300+aa*2*300] = drs_ch_estimates_norm[k+1+aa*PHY_vars_UE->lte_frame_parms.ofdm_symbol_size*nsymb];
-    }
-  }
-}
-
-void do_precoding(PHY_VARS_eNB *PHY_vars_eNB, PHY_VARS_UE *PHY_vars_UE, double PeNb_factor[2][600], short *prec, double *Norm, int nsymb, int UE_id, int aa)
-{
-
-  int l, k;
-  double temp[nsymb][600];
-  short drs_ch_estimates[600*nsymb];
-  short dl_ch_estimates[600*nsymb];
-
-  for (k=0; k<600*nsymb; k++) {
-    drs_ch_estimates[k] = ((short *)PHY_vars_eNB->lte_eNB_ulsch_vars[0]->drs_ch_estimates[UE_id][(aa<<1)])[k];
-    //drs_ch_estimates[aa][2*k+1] = ((short *)PHY_vars_eNB->lte_eNB_ulsch_vars[0]->drs_ch_estimates[UE_id][0])[2*k+1];
-    prec[2*k] = 0;
-    prec[2*k+1] = 0;
-  }
-
-  for (k=0; k<600*nsymb; k++) {
-    dl_ch_estimates[k] = ((short *)PHY_vars_UE->lte_ue_common_vars.dl_ch_estimates[0][(aa<<1)])[k];
-  }
-
-  //printf("PHY_vars_eNB->lte_frame_parms.ofdm_symbol_size = %d\n", PHY_vars_eNB->lte_frame_parms.ofdm_symbol_size);
-  //printf("nsymb = %d\n", nsymb);
-
-  //write_output("drs1.m","drs", drs_ch_estimates[0],nsymb*PHY_vars_eNB->lte_frame_parms.ofdm_symbol_size,1,1);
-
-  //exit(-1);
-
-  for (k=0; k<nsymb; k++) {
-    for (l=0; l<600; l+=2) {
-      temp[k][l] = drs_ch_estimates[k*600+l]*PeNb_factor[aa][l] - drs_ch_estimates[k*600+l+1]*PeNb_factor[aa][l+1];
-      temp[k][l+1] = drs_ch_estimates[k*600+l+1]*PeNb_factor[aa][l] + drs_ch_estimates[k*600+l]*PeNb_factor[aa][l+1];
-
-      prec[k*2*PHY_vars_eNB->lte_frame_parms.ofdm_symbol_size+l] = (short)(temp[k][l]);///(temp[k][l]*temp[k][l]+temp[k][l+1]*temp[k][l+1]));
-      prec[k*2*PHY_vars_eNB->lte_frame_parms.ofdm_symbol_size+l+1] = (short)(temp[k][l+1]);///(temp[k][l]*temp[k][l]+temp[k][l+1]*temp[k][l+1]));
-      Norm[k*2*PHY_vars_eNB->lte_frame_parms.ofdm_symbol_size+l] = sqrt(temp[k][l]*temp[k][l] + temp[k][l+1]*temp[k][l+1]);
-      Norm[k*2*PHY_vars_eNB->lte_frame_parms.ofdm_symbol_size+l+1] = sqrt(temp[k][l]*temp[k][l] + temp[k][l+1]*temp[k][l+1]);
-    }
-  }
-
-  //write_output("drsch.m","drschF", drs_ch_estimates[0],nsymb*PHY_vars_eNB->lte_frame_parms.ofdm_symbol_size,1,1);
-  //write_output("prec.m","precF", prec,nsymb*PHY_vars_eNB->lte_frame_parms.ofdm_symbol_size,1,1);
-  //write_output("dlch.m","dlchF", dl_ch_estimates,nsymb*PHY_vars_eNB->lte_frame_parms.ofdm_symbol_size,1,1);
-  //exit(-1);
-
-}
-/*
-void do_precoding_perfect(PHY_VARS_UE *PHY_vars_UE, double PeNb_factor[2][600], short *prec, double *Norm, int nsymb, int UE_id) {
-
-  int l, k, aa;
-  double temp[nsymb][600];
-  short dl_ch_estimates[2][2*PHY_vars_UE->lte_frame_parms.ofdm_symbol_size*nsymb];
-
-  for (aa = 0; aa<1; aa++) {
-    for (k=0; k<PHY_vars_eNB->lte_frame_parms.ofdm_symbol_size*nsymb; k++) {
-      dl_ch_estimates[aa][2*k] = ((short *)PHY_vars_UE->lte_ue_common_vars.dl_ch_estimates[0][0])[2*k];
-      dl_ch_estimates[aa][2*k+1] = ((short *)PHY_vars_UE->lte_ue_common_vars.dl_ch_estimates[0][0])[2*k+1];
-      prec[2*k] = 1;
-      prec[2*k+1] = 0;
-    }
-  }
-
-  //write_output("drs1.m","drs", drs_ch_estimates[0],2*nsymb*PHY_vars_eNB->lte_frame_parms.ofdm_symbol_size,1,1);
-
-  for (aa=0; aa<1; aa++) {
-    for (k=0; k<nsymb; k++) {
-      for (l=0; l<600; l+=2) {
-        temp[k][l] = dl_ch_estimates[aa][2*k*PHY_vars_UE->lte_frame_parms.ofdm_symbol_size+l];
-        temp[k][l+1] = dl_ch_estimates[aa][2*k*PHY_vars_UE->lte_frame_parms.ofdm_symbol_size+l+1];
-      }
-    }
-    for (k=0; k<nsymb; k++) {
-      for (l=0; l<600; l+=2) {
-        prec[k*2*PHY_vars_eNB->lte_frame_parms.ofdm_symbol_size+l] = (short)(temp[k][l]);///(temp[k][l]*temp[k][l]+temp[k][l+1]*temp[k][l+1])
-        prec[k*2*PHY_vars_eNB->lte_frame_parms.ofdm_symbol_size+l+1] = (short)(temp[k][l+1]);//(short)(-temp[k][l+1]);
-  //Norm[k*2*PHY_vars_eNB->lte_frame_parms.ofdm_symbol_size+l] = sqrt(temp[k][l]*temp[k][l] + temp[k][l+1]*temp[k][l+1]);
-        //Norm[k*2*PHY_vars_eNB->lte_frame_parms.ofdm_symbol_size+l+1] = sqrt(temp[k][l]*temp[k][l] + temp[k][l+1]*temp[k][l+1]);
-      }
-    }
-  }
-}*/
-
-//end Modif channel quantization at UE
-
-//calibration algo
-void do_calibration(short K_dl_ch_estimates[25][2][600], short K_drs_ch_estimates[25][2][600], double PeNb_factor[2][600], int ofdm_syn, int n_K)
-{
-
-  //Calib Algor in eNb
-  int i=0, s_c=0;
-  double ar=0,ai=0,br=0,bi=0,cr=0,ci=0,dr=0,di=0;
-  int aa;
-  int length_H_G = n_K*4;
-
-  //double phase_inc = 2*M_PI*(4*512-4*300)*(5-1)*1/7.68e6;
-
-
-  short H[length_H_G];
-  short G[length_H_G];
-  bzero(H,length_H_G);
-  bzero(G,length_H_G);
-
-  for(s_c=0; s_c<600; s_c+=2) {
-    for(aa=0; aa<1; aa++) {
-      //system for 1 ant at primary, change to perform onother prim ant
-      for(i=0; i<n_K; i++) {
-        //printf("i = %d\n",i);
-        G[(i<<2)+0] = K_dl_ch_estimates[i][aa][s_c+0];
-        G[(i<<2)+1] = K_dl_ch_estimates[i][aa][s_c+1];
-        H[(i<<2)+0] = K_drs_ch_estimates[i][aa][s_c+0];
-        H[(i<<2)+1] = K_drs_ch_estimates[i][aa][s_c+1];
-      }
-
-      for(i=0; i<n_K; i++) {
-        ar +=  H[(i<<2)+0]*H[(i<<2)+0] + H[(i<<2)+1]*H[(i<<2)+1];
-        br +=  H[(i<<2)+0]*G[(i<<2)+0] + H[(i<<2)+1]*G[(i<<2)+1];
-        bi += -H[(i<<2)+0]*G[(i<<2)+1] + H[(i<<2)+1]*G[(i<<2)+0];
-        dr +=  G[(i<<2)+0]*G[(i<<2)+0] + G[(i<<2)+1]*G[(i<<2)+1];
-      }
-
-      ar = (double)(ar/100);
-      br = (double)(br/100);
-      bi = (double)(bi/100);
-      dr = (double)(dr/100);
-
-
-      if( (ar-dr+iSqrt((ar-dr)*(ar-dr)+((br*br+bi*bi)*4)))==0) {
-        PeNb_factor[aa][s_c] = 0;
-        PeNb_factor[aa][s_c+1] = 0;
-      } else {
-        PeNb_factor[aa][s_c]   = (2*br/(ar-dr+iSqrt((ar-dr)*(ar-dr)+((br*br+bi*bi)*4))));
-        PeNb_factor[aa][s_c+1] = (-2*bi/(ar-dr+iSqrt((ar-dr)*(ar-dr)+((br*br+bi*bi)*4))));
-      }
-
-      ar=0;
-      ai=0;
-      br=0;
-      bi=0;
-      cr=0;
-      ci=0;
-      dr=0;
-      di=0;
-      //if ((s_c>>1) > 4) exit(-1);
-    }
-  }
-
-  msg("P_eNb DETERMINED.. \n");
-}
-
-
-//DCI2_5MHz_2A_M10PRB_TDD_t DLSCH_alloc_pdu2_2A[2];
-DCI2_5MHz_2D_M10PRB_TDD_t DLSCH_alloc_pdu2_2D[2];
-
-
-#define UL_RB_ALLOC 0x1ff;
-//#define CCCH_RB_ALLOC computeRIV(PHY_vars_eNB[0]->lte_frame_parms.N_RB_UL,0,2)
-//#define DLSCH_RB_ALLOC 0x1fbf // igore DC component,RB13
-#define DLSCH_RB_ALLOC 0x1fff // all 25 RBs
-//#define DLSCH_RB_ALLOC 0x0001
-
-int main(int argc, char **argv)
-{
-
-  char c;
-  int k,i,j,b,aa,aarx,Msc_RS_idx=0;
-
-  double sigma2_eNB[2], sigma2_eNB_dB[2]= {10,10},SNR,snr0=-2.0,snr1,rate_eNB=0;
-  //modif start UL
-  unsigned int coded_bits_per_codeword_UE;
-  double sigma2_UE[2], sigma2_UE_dB[2]= {10,10}, SNRmeas[2], rate_UE=0;
-  uint8_t control_only_flag = 0;
-  uint8_t cooperation_flag = 0;
-  int **txdata_UE[2];
-  uint8_t cyclic_shift = 0;
-  uint8_t beta_ACK=0,beta_RI=0,beta_CQI=2;
-  uint8_t srs_flag = 0;
-  char fname[20],vname[20];
-  //modif end UL
-  double snr_step=1, snr_int=30;
-  //int **txdataF, **txdata;
-  int **txdata_eNB[2];
-#ifdef IFFT_FPGA
-  int **txdataF2_eNB[2];
-  //modif start UL
-  int **txdataF2_UE[2];
-  //modif end UL
-  int ind;
-#endif
-  LTE_DL_FRAME_PARMS *frame_parms;
-  double **s_re_eNB[2], **s_im_eNB[2], **r_re_eNB[2][2], **r_im_eNB[2][2], **r_re_2eNB[2], **r_im_2eNB[2];
-  //modif start UL
-  int llb;
-  double **s_re_UE[2], **s_im_UE[2], **r_re_UE[2][2], **r_im_UE[2][2], **r_re_2UE[2], **r_im_2UE[2];
-  //modif end UL
-  double forgetting_factor=1.0; //in [0,1] 0 means a new channel every time, 1 means keep the same channel
-  //double hold_channel=0; //use hold_channel=1 instead of forgetting_factor=1 (more efficient)
-  double iqim=0.0;
-
-  uint8_t extended_prefix_flag=0,transmission_mode=1,n_tx=1,n_rx=1;
-  uint16_t Nid_cell=0;
-
-  int eNB_id = 0, eNB_id_i = NUMBER_OF_eNB_MAX;
-  //modif start UL
-  int UE_id = 0;
-  unsigned char mcs_UE;
-  int dec_f=1;
-  short quant=8, quant_v;
-  //modif end UL
-  unsigned char mcs_eNB,dual_stream_UE = 0,awgn_flag=0,round_eNB[2],round_UE[2],dci_flag=0;
-  unsigned char i_mod = 2;
-  unsigned short NB_RB=conv_nprb(0,DLSCH_RB_ALLOC);
-  unsigned char Ns,l,m;
-  uint16_t tdd_config=3;
-  uint16_t n_rnti=0x1234;
-
-  int decalibration = 0, phase_offset = 0;
-
-  double s_time = 1/7.68e6;
-  double delta_offset = 100;
-  double phase_inc = 2*M_PI*delta_offset*s_time;
-
-  double phase_in_UL = phase_inc;
-  double phase_in_DL = phase_inc;
-
-  SCM_t channel_model=Rayleigh1_corr;
-
-  unsigned char *input_buffer[2];
-  unsigned short input_buffer_length[2];
-  unsigned int ret_eNB[2],ret_UE[2];
-  unsigned int coded_bits_per_codeword=0,nsymb,dci_cnt,tbs;
-
-  unsigned int tx_lev_eNB[2],tx_lev_eNB_dB[2],trials,errs_eNB[2][4],round_trials_UE[2][4],round_trials_eNB[2][4],dci_errors[2]= {0,0},dlsch_active=0,num_layers;
-  //modif start UL
-  unsigned int tx_lev_UE[2],tx_lev_UE_dB[2],errs_UE[2][4];
-  //unsigned char *input_buffer_UE; //b
-  char *input_buffer_UE[2]; //b
-  unsigned short input_buffer_length_UE[2];
-  //modif end UL
-  int re_allocated;
-  FILE *bler_fd=NULL;
-  char bler_fname[256];
-  FILE *tikz_fd=NULL;
-  char tikz_fname[256];
-
-  FILE *input_trch_fd=NULL;
-  unsigned char input_trch_file=0;
-  FILE *input_fd=NULL;
-  unsigned char input_file=0;
-  char input_val_str[50],input_val_str2[50];
-
-  char input_trch_val[16];
-  double pilot_sinr, abs_channel;
-
-  //  unsigned char pbch_pdu[6];
-
-  DCI_ALLOC_t dci_alloc[8],dci_alloc_rx[8];
-  int num_common_dci=0,num_ue_spec_dci=0,num_dci=0;
-
-  //  FILE *rx_frame_file;
-
-  int kk, ll;
-
-  int n_frames;
-  int n_ch_rlz = 1;
-  channel_desc_t *eNB2UE[2][2];
-  channel_desc_t *UE2eNB[2][2];
-  double snr;
-  uint8_t num_pdcch_symbols=3,num_pdcch_symbols_2=0;
-  uint8_t pilot1,pilot2,pilot3;
-  uint8_t rx_sample_offset = 0;
-  //char stats_buffer[4096];
-  //int len;
-  uint8_t num_rounds = 1,fix_rounds=0;
-  uint8_t subframe_DL=6;
-  //modif start UL
-  int subframe_UL=2;
-  //modif end UL
-  int u;
-  int abstx=0;
-  int iii;
-  FILE *csv_fd=NULL;
-  char csv_fname[20];
-  int ch_realization;
-  int pmi_feedback=0;
-  // void *data;
-  // int ii;
-  // int bler;
-  double blerr,uncoded_ber[2],avg_ber[2];
-  short *uncoded_ber_bit;
-  uint8_t N_RB_DL=25,osf=1;
-  int16_t amp;
-  //modif start UL
-  unsigned char harq_pid[2];
-  FILE *trch_out_fd=NULL;
-  unsigned char nb_rb_UE=25, first_rb=0, bundling_flag=1;
-  //modif end UL
-#ifdef XFORMS
-  FD_lte_scope *form;
-  char title[255];
-#endif
-
-  // Calibration parameters
-  int P_eNb_active=0;
-  double PeNb_factor[2][600];
-
-  signal(SIGSEGV, handler);
-
-  // default parameters
-  mcs_eNB = 0;
-  //modif start UL
-  mcs_UE = 4;
-  //modif end UL
-  n_frames = 100;
-  snr0 = 20;
-  num_layers = 1;
-
-  while ((c = getopt (argc, argv, "hadpm:n:o:s:f:t:c:g:r:F:x:y:z:M:N:I:i:R:S:C:T:b:u:w:X:q:D:")) != -1) {
-    switch (c) {
-    case 'a':
-      awgn_flag = 1;
-      break;
-
-    case 'b':
-      tdd_config=atoi(optarg);
-      break;
-
-    case 'd':
-      dci_flag = 1;
-      break;
-
-    case 'm':
-      mcs_eNB = atoi(optarg);
-      break;
-
-      /*case 'C':
-      beta_CQI = atoi(optarg);
-      if ((beta_CQI>15)||(beta_CQI<2)) {
-      printf("beta_cqi must be in (2..15)\n");
-      exit(-1);
-      }
-       break;
-
-      case 'R':
-      beta_RI = atoi(optarg);
-      if ((beta_RI>15)||(beta_RI<2)) {
-      printf("beta_ri must be in (0..13)\n");
-      exit(-1);
-      }
-       break;*/
-      //modif start UL
-    case 'w':
-      mcs_UE = atoi(optarg);
-      break;
-
-    case 'r':
-      nb_rb_UE = atoi(optarg);
-      break;
-
-    case 'f':
-      first_rb = atoi(optarg);
-      break;
-
-    case 'q':
-      quant = atoi(optarg);
-      break;
-
-    case 'D':
-      dec_f = atoi(optarg);
-      break;
-
-      //modif end UL
-    case 'n':
-      n_frames = atoi(optarg);
-      break;
-
-    case 'C':
-      Nid_cell = atoi(optarg);
-      break;
-
-    case 'o':
-      rx_sample_offset = atoi(optarg);
-      break;
-
-    case 'F':
-      forgetting_factor = atof(optarg);
-      break;
-
-    case 's':
-      snr0 = atoi(optarg);
-      break;
-
-    case 't':
-      //Td= atof(optarg);
-      printf("Please use the -G option to select the channel model\n");
-      exit(-1);
-      break;
-
-    case 'X':
-      snr_step= atof(optarg);
-      break;
-
-    case 'M':
-      abstx= atof(optarg);
-      break;
-
-    case 'N':
-      n_ch_rlz= atof(optarg);
-      break;
-
-    case 'p':
-      extended_prefix_flag=1;
-      break;
-
-    case 'c':
-      num_pdcch_symbols=atoi(optarg);
-      break;
-
-    case 'g':
-      switch((char)*optarg) {
-      case 'A':
-        channel_model=SCM_A;
-        break;
-
-      case 'B':
-        channel_model=SCM_B;
-        break;
-
-      case 'C':
-        channel_model=SCM_C;
-        break;
-
-      case 'D':
-        channel_model=SCM_D;
-        break;
-
-      case 'E':
-        channel_model=EPA;
-        break;
-
-      case 'F':
-        channel_model=EVA;
-        break;
-
-      case 'G':
-        channel_model=ETU;
-        break;
-
-      case 'H':
-        channel_model=Rayleigh8;
-        break;
-
-      case 'I':
-        channel_model=Rayleigh1;
-        break;
-
-      case 'J':
-        channel_model=Rayleigh1_corr;
-        break;
-
-      case 'K':
-        channel_model=Rayleigh1_anticorr;
-        break;
-
-      case 'L':
-        channel_model=Rice8;
-        break;
-
-      case 'M':
-        channel_model=Rice1;
-        break;
-
-      default:
-        msg("Unsupported channel model!\n");
-        exit(-1);
-      }
-
-      break;
-
-    case 'x':
-      transmission_mode=atoi(optarg);
-
-      if ((transmission_mode!=1) &&
-          (transmission_mode!=2) &&
-          (transmission_mode!=5) &&
-          (transmission_mode!=6)) {
-        msg("Unsupported transmission mode %d\n",transmission_mode);
-        exit(-1);
-      }
-
-      break;
-
-    case 'y':
-      n_tx=atoi(optarg);
-
-      if ((n_tx==0) || (n_tx>2)) {
-        msg("Unsupported number of tx antennas %d\n",n_tx);
-        exit(-1);
-      }
-
-      break;
-
-    case 'z':
-      n_rx=atoi(optarg);
-
-      if ((n_rx==0) || (n_rx>2)) {
-        msg("Unsupported number of rx antennas %d\n",n_rx);
-        exit(-1);
-      }
-
-      break;
-
-    case 'I':
-      input_trch_fd = fopen(optarg,"r");
-      input_trch_file=1;
-      break;
-
-    case 'i':
-      input_fd = fopen(optarg,"r");
-      input_file=1;
-      dci_flag = 1;
-      break;
-
-    case 'R':
-      num_rounds=atoi(optarg);
-      fix_rounds=1;
-      break;
-
-    case 'S':
-      subframe_DL=atoi(optarg);
-      break;
-
-    case 'T':
-      n_rnti=atoi(optarg);
-      break;
-
-    case 'u':
-      dual_stream_UE=atoi(optarg);
-
-      if ((n_tx!=2) || (transmission_mode!=5)) {
-        msg("Unsupported nb of decoded users: %d user(s), %d user(s) to decode\n", n_tx, dual_stream_UE);
-        exit(-1);
-      }
-
-      break;
-
-    case 'h':
-    default:
-      printf("%s -h(elp) -a(wgn on) -d(ci decoding on) -p(extended prefix on) -m mcs_eNB -n n_frames -s snr0 -t Delayspread -x transmission mode (1,2,5,6) -y TXant -z RXant -I trch_file\n",argv[0]);
-      printf("-h This message\n");
-      printf("-a Use AWGN channel and not multipath\n");
-      printf("-c Number of PDCCH symbols\n");
-      printf("-m MCS_eNB\n");
-      printf("-w MCS_UE\n");
-      printf("-q quantization parameters\n");
-      printf("-D DL decimacion factor at UE\n");
-      printf("-r nb_rb_UE Number of ressource blocs in the UL\n");
-      printf("-f First ressource bloc in the UL\n");
-      printf("-d Transmit the DCI and compute its error statistics and the overall throughput\n");
-      printf("-p Use extended prefix mode\n");
-      printf("-n Number of frames to simulate\n");
-      printf("-o Sample offset for receiver\n");
-      printf("-s Starting SNR, runs from SNR to SNR+%.1fdB in steps of %.1fdB. If n_frames is 1 then just SNR is simulated and MATLAB/OCTAVE output is generated\n", snr_int, snr_step);
-      printf("-X step size of SNR, default value is 1.\n");
-      printf("-t Delay spread for multipath channel\n");
-      //printf("-r Ricean factor (dB, 0 dB = Rayleigh, 100 dB = almost AWGN)\n");
-      printf("-g [A:M] Use 3GPP 25.814 SCM-A/B/C/D('A','B','C','D') or 36-101 EPA('E'), EVA ('F'),ETU('G') models (ignores delay spread and Ricean factor), Rayghleigh8 ('H'), Rayleigh1('I'), Rayleigh1_corr('J'), Rayleigh1_anticorr ('K'), Rice8('L'), Rice1('M')\n");
-      printf("-F forgetting factor (0 new channel every trial, 1 channel constant\n");
-      printf("-x Transmission mode (1,2,6 for the moment)\n");
-      printf("-y Number of TX antennas used in eNB\n");
-      printf("-z Number of RX antennas used in UE\n");
-      printf("-R Number of HARQ rounds (fixed)\n");
-      printf("-M Determines whether the Absraction flag is on or Off. 1-->On and 0-->Off. Default status is Off. \n");
-      printf("-N Determines the number of Channel Realizations in Absraction mode. Default value is 1. \n");
-      printf("-I Input filename for TrCH data (binary)\n");
-      printf("-u Determines if the 2 streams at the UE are decoded or not. 0-->U2 is interference only and 1-->U2 is detected\n");
-      exit(1);
-      break;
-    }
-  }
-
-#ifdef XFORMS
-  fl_initialize (&argc, argv, NULL, 0, 0);
-  form = create_form_lte_scope();
-  sprintf (title, "LTE DLSIM SCOPE");
-  fl_show_form (form->lte_scope, FL_PLACE_HOTSPOT, FL_FULLBORDER, title);
-#endif
-
-  lte_param_init(n_tx,n_rx,transmission_mode,extended_prefix_flag,Nid_cell,tdd_config,N_RB_DL,osf);
-
-  printf("Setting mcs_eNB = %d\n",mcs_eNB);
-  //modif start UL
-  printf("Setting mcs_UE = %d\n",mcs_UE);
-  quant_v = (2<<(quant-1))/2; //b quantization bit
-  //printf("quant %d\n",quant_v);
-  //exit(-1);
-  //modif end UL
-  printf("NPRB = %d\n",NB_RB);
-  printf("n_frames = %d\n",n_frames);
-  printf("Transmission mode %d with %dx%d antenna configuration, Extended Prefix %d\n",transmission_mode,n_tx,n_rx,extended_prefix_flag);
-
-  snr1 = snr0+snr_int;
-  printf("SNR0 %f, SNR1 %f\n",snr0,snr1);
-
-  frame_parms = &PHY_vars_eNB[0]->lte_frame_parms;
-
-#ifdef IFFT_FPGA
-
-  for (kk=0; kk<2; kk++) {
-    txdata_eNB[kk]    = (int **)malloc16(2*sizeof(int*));
-    txdata_eNB[kk][0] = (int *)malloc16(FRAME_LENGTH_BYTES);
-    txdata_eNB[kk][1] = (int *)malloc16(FRAME_LENGTH_BYTES);
-
-    bzero(txdata_eNB[kk][0],FRAME_LENGTH_BYTES);
-    bzero(txdata_eNB[kk][1],FRAME_LENGTH_BYTES);
-
-    txdataF2_eNB[kk]    = (int **)malloc16(2*sizeof(int*));
-    txdataF2_eNB[kk][0] = (int *)malloc16(FRAME_LENGTH_BYTES_NO_PREFIX);
-    txdataF2_eNB[kk][1] = (int *)malloc16(FRAME_LENGTH_BYTES_NO_PREFIX);
-
-    bzero(txdataF2_eNB[kk][0],FRAME_LENGTH_BYTES_NO_PREFIX);
-    bzero(txdataF2_eNB[kk][1],FRAME_LENGTH_BYTES_NO_PREFIX);
-
-    txdata_UE[kk]    = (int **)malloc16(2*sizeof(int*));
-    txdata_UE[kk][0] = (int *)malloc16(FRAME_LENGTH_BYTES);
-    txdata_UE[kk][1] = (int *)malloc16(FRAME_LENGTH_BYTES);
-
-    bzero(txdata_UE[kk][0],FRAME_LENGTH_BYTES);
-    bzero(txdata_UE[kk][1],FRAME_LENGTH_BYTES);
-
-    txdataF2_UE[kk] = (int **)malloc16(2*sizeof(int*));
-    txdataF2_UE[kk][0] = (int *)malloc16(FRAME_LENGTH_BYTES_NO_PREFIX);
-    txdataF2_UE[kk][1] = (int *)malloc16(FRAME_LENGTH_BYTES_NO_PREFIX);
-
-    bzero(txdataF2_UE[kk][0],FRAME_LENGTH_BYTES_NO_PREFIX);
-    bzero(txdataF2_UE[kk][1],FRAME_LENGTH_BYTES_NO_PREFIX);
-  }
-
-  //modif end UL
-#else
-  txdata_eNB[0] = PHY_vars_eNB[0]->lte_eNB_common_vars.txdata[eNB_id];
-  txdata_eNB[1] = PHY_vars_eNB[1]->lte_eNB_common_vars.txdata[eNB_id];
-  //modif start UL
-  txdata_UE[0] = PHY_vars_UE[0]->lte_ue_common_vars.txdata;
-  txdata_UE[1] = PHY_vars_UE[1]->lte_ue_common_vars.txdata;
-  //modif end UL
-#endif
-
-  printf("PHY_vars_eNB->lte_frame_parms.Ncp = %d\n", PHY_vars_eNB[0]->lte_frame_parms.Ncp);
-
-  for (kk=0; kk<2; kk++) {
-    s_re_eNB[kk] = malloc(2*sizeof(double*));
-    s_im_eNB[kk] = malloc(2*sizeof(double*));
-    s_re_UE[kk] = malloc(2*sizeof(double*));
-    s_im_UE[kk] = malloc(2*sizeof(double*));
-    r_re_2eNB[kk] = malloc(2*sizeof(double*));
-    r_im_2eNB[kk] = malloc(2*sizeof(double*));
-    r_re_2UE[kk] = malloc(2*sizeof(double*));
-    r_im_2UE[kk] = malloc(2*sizeof(double*));
-
-    for (ll=0; ll<2; ll++) {
-      r_re_eNB[kk][ll] = malloc(2*sizeof(double*));
-      r_im_eNB[kk][ll] = malloc(2*sizeof(double*));
-      r_re_UE[ll][kk] = malloc(2*sizeof(double*));
-      r_im_UE[ll][kk] = malloc(2*sizeof(double*));
-    }
-  }
-
-  nsymb = (PHY_vars_eNB[0]->lte_frame_parms.Ncp == 0) ? 14 : 12;
-  //modif start UL
-  //int dl_ch_estimates_norm[4][PHY_vars_UE->lte_frame_parms.ofdm_symbol_size*nsymb/2];
-  int n_K=15;
-  int   dl_ch_estimates_length=(2*300*4)/dec_f;
-  short dl_ch_estimates[2][dl_ch_estimates_length];
-  bzero(dl_ch_estimates[0],(dl_ch_estimates_length));
-  bzero(dl_ch_estimates[1],(dl_ch_estimates_length));
-
-  short K_dl_ch_estimates[n_K][2][600];
-  short K_drs_ch_estimates[n_K][2][600];
-
-  double s_re_out[2*nsymb*OFDM_SYMBOL_SIZE_COMPLEX_SAMPLES], s_im_out[2*nsymb*OFDM_SYMBOL_SIZE_COMPLEX_SAMPLES], r_re_out[2*nsymb*OFDM_SYMBOL_SIZE_COMPLEX_SAMPLES],
-         r_im_out[2*nsymb*OFDM_SYMBOL_SIZE_COMPLEX_SAMPLES];
-
-  for(aa=0; aa<2; aa++) {
-    for(k=0; k<n_K; k++) {
-      bzero(K_dl_ch_estimates[k][aa],600);
-      bzero(K_drs_ch_estimates[k][aa],600);
-    }
-  }
-
-  int drs_ch_estimates_length=(2*300*4)/dec_f;
-  short drs_ch_estimates[2][drs_ch_estimates_length];
-  bzero(drs_ch_estimates[0],(drs_ch_estimates_length));
-  bzero(drs_ch_estimates[1],(drs_ch_estimates_length));
-
-  coded_bits_per_codeword_UE = nb_rb_UE * (12 * get_Qm(mcs_UE)) * nsymb;
-  rate_UE = (double)dlsch_tbs25[get_I_TBS(mcs_UE)][nb_rb_UE-1]/(coded_bits_per_codeword_UE);
-  //modif end UL
-
-  printf("Channel Model=%d\n",channel_model);
-  printf("SCM-A=%d, SCM-B=%d, SCM-C=%d, SCM-D=%d, EPA=%d, EVA=%d, ETU=%d, Rayleigh8=%d, Rayleigh1=%d, Rayleigh1_corr=%d, Rayleigh1_anticorr=%d, Rice1=%d, Rice8=%d\n",
-         SCM_A, SCM_B, SCM_C, SCM_D, EPA, EVA, ETU, Rayleigh8, Rayleigh1, Rayleigh1_corr, Rayleigh1_anticorr, Rice1, Rice8);
-  sprintf(bler_fname,"second_bler_tx%d_mcs%d_chan%d.csv",transmission_mode,mcs_eNB,channel_model);
-  bler_fd = fopen(bler_fname,"w");
-  fprintf(bler_fd,"SNR; MCS; TBS; rate; err0; trials0; err1; trials1; err2; trials2; err3; trials3; dci_err\n");
-
-  if(abstx) {
-    // CSV file
-    sprintf(csv_fname,"data_out%d.m",mcs_eNB);
-    csv_fd = fopen(csv_fname,"w");
-    fprintf(csv_fd,"data_all%d=[",mcs_eNB);
-  }
-
-  sprintf(tikz_fname, "second_bler_tx%d_u2=%d_mcs%d_chan%d_nsimus%d",transmission_mode,dual_stream_UE,mcs_eNB,channel_model,n_frames);
-  tikz_fd = fopen(tikz_fname,"w");
-
-  switch (mcs_eNB) {
-  case 0:
-    fprintf(tikz_fd,"\\addplot[color=blue, mark=star] plot coordinates {");
-    break;
-
-  case 1:
-    fprintf(tikz_fd,"\\addplot[color=red, mark=star] plot coordinates {");
-    break;
-
-  case 2:
-    fprintf(tikz_fd,"\\addplot[color=green, mark=star] plot coordinates {");
-    break;
-
-  case 3:
-    fprintf(tikz_fd,"\\addplot[color=yellow, mark=star] plot coordinates {");
-    break;
-
-  case 4:
-    fprintf(tikz_fd,"\\addplot[color=black, mark=star] plot coordinates {");
-    break;
-
-  case 5:
-    fprintf(tikz_fd,"\\addplot[color=blue, mark=o] plot coordinates {");
-    break;
-
-  case 6:
-    fprintf(tikz_fd,"\\addplot[color=red, mark=o] plot coordinates {");
-    break;
-
-  case 7:
-    fprintf(tikz_fd,"\\addplot[color=green, mark=o] plot coordinates {");
-    break;
-
-  case 8:
-    fprintf(tikz_fd,"\\addplot[color=yellow, mark=o] plot coordinates {");
-    break;
-
-  case 9:
-    fprintf(tikz_fd,"\\addplot[color=black, mark=o] plot coordinates {");
-    break;
-  }
-
-  for (i=0; i<2; i++) {
-    for (kk=0; kk<2; kk++) {
-      s_re_eNB[kk][i] = malloc(FRAME_LENGTH_COMPLEX_SAMPLES*sizeof(double));
-      s_im_eNB[kk][i] = malloc(FRAME_LENGTH_COMPLEX_SAMPLES*sizeof(double));
-      s_re_UE[kk][i] = malloc(FRAME_LENGTH_COMPLEX_SAMPLES*sizeof(double));
-      s_im_UE[kk][i] = malloc(FRAME_LENGTH_COMPLEX_SAMPLES*sizeof(double));
-      r_re_2eNB[kk][i] = malloc(FRAME_LENGTH_COMPLEX_SAMPLES*sizeof(double));
-      r_im_2eNB[kk][i] = malloc(FRAME_LENGTH_COMPLEX_SAMPLES*sizeof(double));
-      r_re_2UE[kk][i] = malloc(FRAME_LENGTH_COMPLEX_SAMPLES*sizeof(double));
-      r_im_2UE[kk][i] = malloc(FRAME_LENGTH_COMPLEX_SAMPLES*sizeof(double));
-
-      for (ll=0; ll<2; ll++) {
-        r_re_eNB[kk][ll][i] = malloc(FRAME_LENGTH_COMPLEX_SAMPLES*sizeof(double));
-        r_im_eNB[kk][ll][i] = malloc(FRAME_LENGTH_COMPLEX_SAMPLES*sizeof(double));
-        r_re_UE[ll][kk][i] = malloc(FRAME_LENGTH_COMPLEX_SAMPLES*sizeof(double));
-        r_im_UE[ll][kk][i] = malloc(FRAME_LENGTH_COMPLEX_SAMPLES*sizeof(double));
-      }
-    }
-  }
-
-  UL_alloc_pdu.type    = 0;
-  UL_alloc_pdu.rballoc = computeRIV(PHY_vars_eNB[0]->lte_frame_parms.N_RB_UL,first_rb,nb_rb_UE);// 12 RBs from position 8
-  printf("rballoc %d (dci %x)\n",UL_alloc_pdu.rballoc,*(uint32_t *)&UL_alloc_pdu);
-  UL_alloc_pdu.mcs     = mcs_UE;
-  UL_alloc_pdu.ndi     = 1;
-  UL_alloc_pdu.TPC     = 0;
-  UL_alloc_pdu.cqi_req = 0;
-  UL_alloc_pdu.cshift  = 0;
-  UL_alloc_pdu.dai     = 1;
-
-  //PHY_vars_UE->lte_ue_pdcch_vars[0]->crnti = n_rnti;
-
-  for (kk=0; kk<2; kk++) {
-    PHY_vars_UE[kk]->lte_ue_pdcch_vars[0]->crnti = 14;
-    PHY_vars_UE[kk]->PHY_measurements.rank[0] = 0;
-    PHY_vars_UE[kk]->transmission_mode[0] = transmission_mode;
-    PHY_vars_UE[kk]->pucch_config_dedicated[0].tdd_AckNackFeedbackMode = bundling_flag == 1 ? bundling : multiplexing;
-    PHY_vars_UE[kk]->lte_frame_parms.pusch_config_common.ul_ReferenceSignalsPUSCH.groupHoppingEnabled = 1;
-    PHY_vars_UE[kk]->lte_frame_parms.pusch_config_common.ul_ReferenceSignalsPUSCH.sequenceHoppingEnabled = 0;
-    PHY_vars_UE[kk]->lte_frame_parms.pusch_config_common.ul_ReferenceSignalsPUSCH.groupAssignmentPUSCH = 0;
-    init_ul_hopping(&PHY_vars_UE[kk]->lte_frame_parms);
-    msg("Init UL hopping UE %d\n", kk);
-
-    PHY_vars_eNB[kk]->transmission_mode[0] = transmission_mode;
-    PHY_vars_eNB[kk]->pucch_config_dedicated[0].tdd_AckNackFeedbackMode = bundling_flag == 1 ? bundling : multiplexing;
-    PHY_vars_eNB[kk]->lte_frame_parms.pusch_config_common.ul_ReferenceSignalsPUSCH.groupHoppingEnabled = 1;
-    PHY_vars_eNB[kk]->lte_frame_parms.pusch_config_common.ul_ReferenceSignalsPUSCH.sequenceHoppingEnabled = 0;
-    PHY_vars_eNB[kk]->lte_frame_parms.pusch_config_common.ul_ReferenceSignalsPUSCH.groupAssignmentPUSCH = 0;
-    msg("Init UL hopping eNB\n");
-
-    init_ul_hopping(&PHY_vars_eNB[kk]->lte_frame_parms);
-
-  }//end kk
-
-  // Fill in UL_alloc
-  CCCH_alloc_pdu.type               = 0;
-  CCCH_alloc_pdu.vrb_type           = 0;
-  //CCCH_alloc_pdu.rballoc            = CCCH_RB_ALLOC;
-  CCCH_alloc_pdu.ndi      = 1;
-  CCCH_alloc_pdu.mcs      = 1;
-  CCCH_alloc_pdu.harq_pid = 0;
-  //modif start UL
-  DLSCH_alloc_pdu2.rah              = 0;
-  DLSCH_alloc_pdu2.rballoc          = DLSCH_RB_ALLOC;
-  DLSCH_alloc_pdu2.TPC              = 0;
-  DLSCH_alloc_pdu2.dai              = 0;
-  DLSCH_alloc_pdu2.harq_pid         = 0;
-  DLSCH_alloc_pdu2.tb_swap          = 0;
-  DLSCH_alloc_pdu2.mcs1             = mcs_UE;//to check
-  DLSCH_alloc_pdu2.ndi1             = 1;
-  DLSCH_alloc_pdu2.rv1              = 0;
-  // Forget second codeword
-  DLSCH_alloc_pdu2.tpmi             = 5 ;  // precoding
-  //modif end UL
-
-  DLSCH_alloc_pdu2_2D[0].rah              = 0;
-  DLSCH_alloc_pdu2_2D[0].rballoc          = DLSCH_RB_ALLOC;
-  DLSCH_alloc_pdu2_2D[0].TPC              = 0;
-  DLSCH_alloc_pdu2_2D[0].dai              = 0;
-  DLSCH_alloc_pdu2_2D[0].harq_pid         = 0;
-  DLSCH_alloc_pdu2_2D[0].tb_swap          = 0;
-  DLSCH_alloc_pdu2_2D[0].mcs1             = mcs_eNB;
-  DLSCH_alloc_pdu2_2D[0].ndi1             = 1;
-  DLSCH_alloc_pdu2_2D[0].rv1              = 0;
-  // Forget second codeword
-  DLSCH_alloc_pdu2_2D[0].tpmi             = (transmission_mode>=5 ? 5 : 0);  // precoding
-  DLSCH_alloc_pdu2_2D[0].dl_power_off     = (transmission_mode==5 ? 0 : 1);
-
-  DLSCH_alloc_pdu2_2D[1].rah              = 0;
-  DLSCH_alloc_pdu2_2D[1].rballoc          = DLSCH_RB_ALLOC;
-  DLSCH_alloc_pdu2_2D[1].TPC              = 0;
-  DLSCH_alloc_pdu2_2D[1].dai              = 0;
-  DLSCH_alloc_pdu2_2D[1].harq_pid         = 0;
-  DLSCH_alloc_pdu2_2D[1].tb_swap          = 0;
-  DLSCH_alloc_pdu2_2D[1].mcs1             = mcs_eNB;
-  DLSCH_alloc_pdu2_2D[1].ndi1             = 1;
-  DLSCH_alloc_pdu2_2D[1].rv1              = 0;
-  // Forget second codeword
-  DLSCH_alloc_pdu2_2D[1].tpmi             = (transmission_mode>=5 ? 5 : 0);  // precoding
-  DLSCH_alloc_pdu2_2D[1].dl_power_off     = (transmission_mode==5 ? 0 : 1);
-
-  for (kk=0; kk<2; kk++) {
-    PHY_vars_eNB[kk]->dlsch_eNB_SI        = new_eNB_dlsch(1,1,0);
-    PHY_vars_eNB[kk]->dlsch_eNB_SI->rnti  = SI_RNTI;
-
-    PHY_vars_eNB[kk]->lte_frame_parms.soundingrs_ul_config_common.srs_BandwidthConfig = 2;
-    PHY_vars_eNB[kk]->lte_frame_parms.soundingrs_ul_config_common.srs_SubframeConfig = 7;
-
-    PHY_vars_eNB[kk]->soundingrs_ul_config_dedicated[UE_id].srs_ConfigIndex = 1;
-    PHY_vars_eNB[kk]->soundingrs_ul_config_dedicated[UE_id].srs_Bandwidth = 0;
-    PHY_vars_eNB[kk]->soundingrs_ul_config_dedicated[UE_id].transmissionComb = 0;
-    PHY_vars_eNB[kk]->soundingrs_ul_config_dedicated[UE_id].freqDomainPosition = 0;
-    PHY_vars_eNB[kk]->cooperation_flag = cooperation_flag;
-
-    PHY_vars_eNB[kk]->pusch_config_dedicated[UE_id].betaOffset_ACK_Index = beta_ACK;
-    PHY_vars_eNB[kk]->pusch_config_dedicated[UE_id].betaOffset_RI_Index  = beta_RI;
-    PHY_vars_eNB[kk]->pusch_config_dedicated[UE_id].betaOffset_CQI_Index = beta_CQI;
-
-    PHY_vars_eNB[kk]->ulsch_eNB[0] = new_eNB_ulsch(3,0);
-    // Create transport channel structures for SI pdus
-    PHY_vars_UE[kk]->dlsch_ue_SI[0]  = new_ue_dlsch(1,1,0);
-    PHY_vars_UE[kk]->dlsch_ue_SI[0]->rnti = SI_RNTI;
-    PHY_vars_UE[kk]->lte_frame_parms.soundingrs_ul_config_common.srs_BandwidthConfig = 2;
-    PHY_vars_UE[kk]->lte_frame_parms.soundingrs_ul_config_common.srs_SubframeConfig = 7;
-    PHY_vars_UE[kk]->soundingrs_ul_config_dedicated[eNB_id].srs_Bandwidth = 0;
-    PHY_vars_UE[kk]->soundingrs_ul_config_dedicated[eNB_id].transmissionComb = 0;
-    PHY_vars_UE[kk]->soundingrs_ul_config_dedicated[eNB_id].freqDomainPosition = 0;
-
-    PHY_vars_UE[kk]->pusch_config_dedicated[eNB_id].betaOffset_ACK_Index = beta_ACK;
-    PHY_vars_UE[kk]->pusch_config_dedicated[eNB_id].betaOffset_RI_Index  = beta_RI;
-    PHY_vars_UE[kk]->pusch_config_dedicated[eNB_id].betaOffset_CQI_Index = beta_CQI;
-    PHY_vars_UE[kk]->ulsch_ue[0]   = new_ue_ulsch(3,0);
-
-    for (ll=0; ll<2; ll++) {
-      eNB2UE[kk][ll] = new_channel_desc_scm(PHY_vars_eNB[kk]->lte_frame_parms.nb_antennas_tx,
-                                            PHY_vars_UE[ll]->lte_frame_parms.nb_antennas_rx,
-                                            channel_model,
-                                            BW,
-                                            forgetting_factor,
-                                            rx_sample_offset,
-                                            (kk==ll ? 0 : -100));
-
-      UE2eNB[ll][kk] = new_channel_desc_scm(PHY_vars_UE[ll]->lte_frame_parms.nb_antennas_tx,//b
-                                            PHY_vars_eNB[kk]->lte_frame_parms.nb_antennas_rx,//b
-                                            channel_model,
-                                            BW,
-                                            forgetting_factor,
-                                            0, //rx_sample_offset
-                                            (kk==ll ? 0 : -100));
-
-      if (eNB2UE[kk][ll]==NULL) {
-        msg("Problem generating channel model. Exiting.\n");
-        exit(-1);
-      }
-    }
-
-    printf("PUSCH Beta : ACK %f, RI %f, CQI %f\n",(double)beta_ack[beta_ACK]/8,(double)beta_ri[beta_RI]/8,(double)beta_cqi[beta_CQI]/8);
-
-    // Create transport channel structures for 2 transport blocks (MIMO)
-    for (i=0; i<2; i++) {
-      PHY_vars_eNB[kk]->dlsch_eNB[0][i] = new_eNB_dlsch(1,8,0);
-
-      if (!PHY_vars_eNB[kk]->dlsch_eNB[0][i]) {
-        printf("Can't get eNB dlsch structures\n");
-        exit(-1);
-      }
-
-      PHY_vars_eNB[kk]->dlsch_eNB[0][i]->rnti = n_rnti+0;
-    }
-
-    for (i=0; i<2; i++) {
-      PHY_vars_UE[kk]->dlsch_ue[0][i]  = new_ue_dlsch(1,8,0);
-
-      if (!PHY_vars_UE[kk]->dlsch_ue[0][i]) {
-        printf("Can't get ue dlsch structures for ant %d\n", kk);
-        exit(-1);
-      }
-
-      PHY_vars_UE[kk]->dlsch_ue[0][i]->rnti = n_rnti; //b Check rnti numb
-    }
-
-    generate_ue_ulsch_params_from_dci((void *)&UL_alloc_pdu,
-                                      14,
-                                      (subframe_UL<4)?(subframe_UL+6):(subframe_UL-4),
-                                      format0,
-                                      PHY_vars_UE[kk],
-                                      SI_RNTI,
-                                      RA_RNTI,
-                                      P_RNTI,
-                                      0,
-                                      srs_flag);
-
-    PHY_vars_UE[kk]->ulsch_ue[0]->o_ACK[0] = 1;
-
-
-    generate_eNB_ulsch_params_from_dci((DCI0_5MHz_TDD_1_6_t *)&UL_alloc_pdu,
-                                       14,
-                                       (subframe_UL<4)?(subframe_UL+6):(subframe_UL-4),
-                                       format0,
-                                       0,
-                                       PHY_vars_eNB[kk],
-                                       SI_RNTI,
-                                       RA_RNTI,
-                                       P_RNTI,
-                                       srs_flag);
-
-    if (DLSCH_alloc_pdu2_2D[0].tpmi == 5)
-      PHY_vars_eNB[kk]->eNB_UE_stats[0].DL_pmi_single = (unsigned short)(taus()&0xffff);
-    else
-      PHY_vars_eNB[kk]->eNB_UE_stats[0].DL_pmi_single = 0;
-
-
-
-    if (input_fd==NULL) {
-
-      printf("Generating dlsch params for user\n");
-      generate_eNB_dlsch_params_from_dci(0,
-                                         &DLSCH_alloc_pdu2_2D[0],
-                                         n_rnti+0,
-                                         format2_2D_M10PRB,
-                                         PHY_vars_eNB[kk]->dlsch_eNB[0],
-                                         &PHY_vars_eNB[kk]->lte_frame_parms,
-                                         SI_RNTI,
-                                         RA_RNTI,
-                                         P_RNTI,
-                                         PHY_vars_eNB[kk]->eNB_UE_stats[0].DL_pmi_single);
-
-      num_dci = 0;
-      num_ue_spec_dci = 0;
-      num_common_dci = 0;
-
-
-      // UE specific DCI
-      memcpy(&dci_alloc[num_dci].dci_pdu[0],&DLSCH_alloc_pdu2_2D[0],sizeof(DCI2_5MHz_2D_M10PRB_TDD_t));
-      dci_alloc[num_dci].dci_length = sizeof_DCI2_5MHz_2D_M10PRB_TDD_t;
-      dci_alloc[num_dci].L          = 2;
-      dci_alloc[num_dci].rnti       = n_rnti+0;
-      dci_alloc[num_dci].format     = format2_2D_M10PRB;
-
-      dump_dci(&PHY_vars_eNB[kk]->lte_frame_parms,&dci_alloc[num_dci]);
-
-      num_dci++;
-      num_ue_spec_dci++;
-
-      input_buffer_length[kk] = PHY_vars_eNB[kk]->dlsch_eNB[0][0]->harq_processes[0]->TBS/8;
-      input_buffer[kk] = (unsigned char *)malloc(input_buffer_length[kk]+4);
-      memset(input_buffer[kk],0,input_buffer_length[kk]+4);
-
-      if (input_trch_file==0) {
-        for (i=0; i<input_buffer_length[kk]; i++) {
-          input_buffer[kk][i]= (unsigned char)(taus()&0xff);
-        }
-      }
-
-      else {
-        i=0;
-
-        while ((!feof(input_trch_fd)) && (i<input_buffer_length[kk]<<3)) {
-          fscanf(input_trch_fd,"%s",input_trch_val);
-
-          if (input_trch_val[0] == '1')
-            input_buffer[kk][i>>3]+=(1<<(7-(i&7)));
-
-          if (i<16)
-            printf("input_trch_val %d : %c\n",i,input_trch_val[0]);
-
-          i++;
-
-          if (((i%8) == 0) && (i<17))
-            printf("%x\n",input_buffer[kk][(i-1)>>3]);
-        }
-
-        printf("Read in %d bits\n",i);
-      }
-    }
-
-
-
-    if (PHY_vars_eNB[kk]->lte_frame_parms.Ncp == 0) {  // normal prefix
-      pilot1 = 4;
-      pilot2 = 7;
-      pilot3 = 11;
-    } else { // extended prefix
-      pilot1 = 3;
-      pilot2 = 6;
-      pilot3 = 9;
-    }
-  }// end kk
-
-  int prec_length = 2*nsymb*PHY_vars_eNB[0]->lte_frame_parms.ofdm_symbol_size;
-  short prec[prec_length];
-  double Norm[prec_length];
-
-  for (ch_realization=0; ch_realization<n_ch_rlz; ch_realization++) {
-    if(abstx) {
-      printf("**********************Channel Realization Index = %d **************************\n", ch_realization);
-    }
-
-    for (SNR=snr0; SNR<snr1; SNR+=snr_step) {
-
-      P_eNb_active = 0;
-
-      for (kk=0; kk<2; kk++) {
-        for (aa=0; aa<4; aa++) {
-          errs_eNB[kk][aa]=0;
-          round_trials_eNB[kk][aa] = 0;
-          errs_UE[kk][aa]=0;
-          round_trials_UE[kk][aa] = 0;
-        }
-
-        for (ll=0; ll<2; ll++) {
-          random_channel(eNB2UE[kk][ll]);
-          UE2eNB[ll][kk] = eNB2UE[kk][ll];
-        }//end ll
-
-        round_UE[kk] = 0;
-        round_eNB[kk] = 0;
-        dci_errors[kk] = 0;
-        avg_ber[kk] = 0;
-      }//end kk
-
-
-      llb=0;
-
-      randominit(0);
-
-      for (kk=0; kk<2; kk++) {//kk for UE
-
-        harq_pid[kk] = subframe2harq_pid(&PHY_vars_UE[kk]->lte_frame_parms,subframe_UL);
-
-        if (input_fd == NULL) {
-          input_buffer_length_UE[kk] = PHY_vars_UE[kk]->ulsch_ue[0]->harq_processes[harq_pid[kk]]->TBS/8;
-
-          //input_buffer_UE = (unsigned char *)malloc(input_buffer_length_UE+4);//b
-          input_buffer_UE[kk] = (char *)malloc(input_buffer_length_UE[kk]+4);//b
-          mac_xface->frame=1;
-
-          if (n_frames == 1) {
-            trch_out_fd = fopen("ulsch_trch.txt","w");
-
-            for (i=0; i<input_buffer_length_UE[kk]; i++) {
-              input_buffer_UE[kk][i] = taus()&0xff;
-
-              for (j=0; j<8; j++)
-                fprintf(trch_out_fd,"%d\n",(input_buffer_UE[kk][i]>>(7-j))&1);
-            } //exit(-1);
-
-            fclose(trch_out_fd);
-          }
-        } else {
-          n_frames=1;
-          i=0;
-
-          while (!feof(input_fd)) {
-            fscanf(input_fd,"%s %s",input_val_str,input_val_str2);//&input_val1,&input_val2);
-
-            if ((i%4)==0) {
-              ((short*)txdata_UE[kk][0])[i/2] = (short)((1<<15)*strtod(input_val_str,NULL));
-              ((short*)txdata_UE[kk][0])[(i/2)+1] = (short)((1<<15)*strtod(input_val_str2,NULL));
-
-              if ((i/4)<100)
-                printf("sample %d => %e + j%e (%d +j%d)\n",i/4,strtod(input_val_str,NULL),strtod(input_val_str2,NULL),((short*)txdata_UE[kk][0])[i/4],((short*)txdata_UE[kk][0])[(i/4)+1]);//1,input_val2,);
-            }
-
-            i++;
-
-            if (i>(FRAME_LENGTH_SAMPLES))
-              break;
-          }
-
-          printf("Read in %d samples\n",i/4);
-          write_output("txsig0_UE.m","txs0_UE", txdata_UE[kk][0],2*frame_parms->samples_per_tti,1,1);
-
-          tx_lev_UE[kk] = signal_energy(&txdata_UE[kk][0][0],
-                                        OFDM_SYMBOL_SIZE_COMPLEX_SAMPLES);
-          tx_lev_UE_dB[kk] = (unsigned int) dB_fixed(tx_lev_UE[kk]);
-        }
-      }// end kk
-
-      for (trials = 0; trials<n_frames; trials++) {
-        //  printf("Trial %d\n",trials);
-        fflush(stdout);
-
-        for (kk=0; kk<2; kk++) {
-          round_eNB[kk]=0;
-          round_UE[kk]=0;
-
-          for (ll=0; ll<2; ll++)
-            eNB2UE[kk][ll]->first_run = 1;
-        }
-
-        while ((round_eNB[0] < num_rounds)||(round_eNB[1] < num_rounds)) {
-
-
-          if(transmission_mode>=5)
-            pmi_feedback=1;
-          else
-            pmi_feedback=0;
-
-PMI_FEEDBACK:
-
-          for (kk=0; kk<2; kk++) {
-            round_trials_eNB[kk][round_eNB[kk]]++;
-            round_trials_UE[kk][round_UE[kk]]++;
-
-            for (aa=0; aa<PHY_vars_eNB[kk]->lte_frame_parms.nb_antennas_tx; aa++) {
-#ifdef IFFT_FPGA
-              memset(&PHY_vars_eNB[kk]->lte_eNB_common_vars.txdataF[eNB_id][aa][0],0,NUMBER_OF_USEFUL_CARRIERS*NUMBER_OF_SYMBOLS_PER_FRAME*sizeof(mod_sym_t));
-#else
-              memset(&PHY_vars_eNB[kk]->lte_eNB_common_vars.txdataF[eNB_id][aa][0],0,FRAME_LENGTH_COMPLEX_SAMPLES_NO_PREFIX*sizeof(mod_sym_t));
-#endif
-            }
-
-            if (input_fd==NULL) {
-
-              if (round_UE[kk] == 0) {
-                PHY_vars_eNB[kk]->ulsch_eNB[0]->harq_processes[0]->Ndi = 1;
-                PHY_vars_eNB[kk]->ulsch_eNB[0]->harq_processes[0]->rvidx = round_UE[kk]>>1;
-
-                PHY_vars_UE[kk]->ulsch_ue[0]->harq_processes[0]->Ndi = 1;
-                PHY_vars_UE[kk]->ulsch_ue[0]->harq_processes[0]->rvidx = round_UE[kk]>>1;
-              } else {
-                PHY_vars_eNB[kk]->ulsch_eNB[0]->harq_processes[0]->Ndi = 0;
-                PHY_vars_eNB[kk]->ulsch_eNB[0]->harq_processes[0]->rvidx = round_UE[kk]>>1;
-                PHY_vars_UE[kk]->ulsch_ue[0]->harq_processes[0]->Ndi = 0;
-                PHY_vars_UE[kk]->ulsch_ue[0]->harq_processes[0]->rvidx = round_UE[kk]>>1;
-              }
-
-              if (round_eNB[kk] == 0) {
-                PHY_vars_eNB[kk]->dlsch_eNB[0][0]->harq_processes[0]->Ndi = 1;
-                PHY_vars_eNB[kk]->dlsch_eNB[0][0]->harq_processes[0]->rvidx = round_eNB[kk]>>1;
-                DLSCH_alloc_pdu2_2D[0].ndi1             = 1;
-                DLSCH_alloc_pdu2_2D[0].rv1              = 0;
-                memcpy(&dci_alloc[0].dci_pdu[0],&DLSCH_alloc_pdu2_2D[0],sizeof(DCI2_5MHz_2D_M10PRB_TDD_t));
-              } else {
-
-                PHY_vars_eNB[kk]->dlsch_eNB[0][0]->harq_processes[0]->Ndi = 0;
-                PHY_vars_eNB[kk]->dlsch_eNB[0][0]->harq_processes[0]->rvidx = round_eNB[kk]>>1;
-                DLSCH_alloc_pdu2_2D[0].ndi1             = 0;
-                DLSCH_alloc_pdu2_2D[0].rv1              = round_eNB[kk]>>1;
-                memcpy(&dci_alloc[0].dci_pdu[0],&DLSCH_alloc_pdu2_2D[0],sizeof(DCI2_5MHz_2D_M10PRB_TDD_t));
-              }
-
-              //********************** DL part ****************************************************************************
-              num_pdcch_symbols_2 = generate_dci_top(num_ue_spec_dci,
-                                                     num_common_dci,
-                                                     dci_alloc,
-                                                     0,
-                                                     1024,
-                                                     &PHY_vars_eNB[kk]->lte_frame_parms,
-                                                     PHY_vars_eNB[kk]->lte_eNB_common_vars.txdataF[eNB_id],
-                                                     subframe_DL);
-
-              if (num_pdcch_symbols_2 > num_pdcch_symbols) {
-                msg("Error: given num_pdcch_symbols not big enough\n");
-                exit(-1);
-              }
-
-              coded_bits_per_codeword = get_G(&PHY_vars_eNB[kk]->lte_frame_parms,
-                                              PHY_vars_eNB[kk]->dlsch_eNB[0][0]->nb_rb,
-                                              PHY_vars_eNB[kk]->dlsch_eNB[0][0]->rb_alloc,
-                                              get_Qm(PHY_vars_eNB[kk]->dlsch_eNB[0][0]->harq_processes[0]->mcs),
-                                              num_pdcch_symbols,
-                                              subframe_DL);
-
-#ifdef TBS_FIX
-              tbs = (double)3*dlsch_tbs25[get_I_TBS(PHY_vars_eNB[kk]->dlsch_eNB[0][0]->harq_processes[0]->mcs)][PHY_vars_eNB[kk]->dlsch_eNB[0][0]->nb_rb-1]/4;
-#else
-              tbs = (double)dlsch_tbs25[get_I_TBS(PHY_vars_eNB[kk]->dlsch_eNB[0][0]->harq_processes[0]->mcs)][PHY_vars_eNB[kk]->dlsch_eNB[0][0]->nb_rb-1];
-#endif
-
-              rate_eNB = (double)tbs/(double)coded_bits_per_codeword;
-
-              uncoded_ber_bit = (short*) malloc(2*coded_bits_per_codeword);
-
-              if (trials==0 && round_eNB[0]==0 && kk==0)
-                printf("\nRate = %f (G %d, TBS %d, TBS_UE[%d] %d, mod %d, pdcch_sym %d)\n",
-                       rate_eNB,
-                       coded_bits_per_codeword,
-                       tbs,
-                       kk,
-                       PHY_vars_UE[kk]->ulsch_ue[0]->harq_processes[harq_pid[0]]->TBS,
-                       get_Qm(PHY_vars_eNB[kk]->dlsch_eNB[0][0]->harq_processes[0]->mcs),
-                       num_pdcch_symbols);
-
-
-              // use the PMI from previous trial
-              if (DLSCH_alloc_pdu2_2D[0].tpmi == 5) {
-                PHY_vars_eNB[kk]->dlsch_eNB[0][0]->pmi_alloc = quantize_subband_pmi(&PHY_vars_UE[kk]->PHY_measurements,0);
-                PHY_vars_UE[kk]->dlsch_ue[0][0]->pmi_alloc = quantize_subband_pmi(&PHY_vars_UE[kk]->PHY_measurements,0);
-              }
-
-              if (dlsch_encoding(input_buffer[kk],
-                                 &PHY_vars_eNB[kk]->lte_frame_parms,
-                                 num_pdcch_symbols,
-                                 PHY_vars_eNB[kk]->dlsch_eNB[0][0],
-                                 subframe_DL)<0)
-                exit(-1);
-
-              // printf("Did not Crash here 1\n");
-              PHY_vars_eNB[kk]->dlsch_eNB[0][0]->rnti = n_rnti+0;
-              dlsch_scrambling(&PHY_vars_eNB[kk]->lte_frame_parms,
-                               num_pdcch_symbols,
-                               PHY_vars_eNB[kk]->dlsch_eNB[0][0],
-                               coded_bits_per_codeword,
-                               0,
-                               subframe_DL<<1);
-
-              if (transmission_mode == 5) {
-                amp = (int16_t)(((int32_t)1024*ONE_OVER_SQRT2_Q15)>>15);
-              } else
-                amp = 1024;
-
-              re_allocated = dlsch_modulation(PHY_vars_eNB[kk]->lte_eNB_common_vars.txdataF[eNB_id],
-                                              amp,
-                                              subframe_DL,
-                                              &PHY_vars_eNB[kk]->lte_frame_parms,
-                                              num_pdcch_symbols,
-                                              PHY_vars_eNB[kk]->dlsch_eNB[0][0]);
-
-              if (num_layers>1)
-                re_allocated = dlsch_modulation(PHY_vars_eNB[kk]->lte_eNB_common_vars.txdataF[eNB_id],
-                                                1024,
-                                                subframe_DL,
-                                                &PHY_vars_eNB[kk]->lte_frame_parms,
-                                                num_pdcch_symbols,
-                                                PHY_vars_eNB[kk]->dlsch_eNB[0][1]);
-
-              generate_pilots(PHY_vars_eNB[kk],
-                              PHY_vars_eNB[kk]->lte_eNB_common_vars.txdataF[eNB_id],
-                              1024,
-                              LTE_NUMBER_OF_SUBFRAMES_PER_FRAME);
-
-#ifdef IFFT_FPGA
-
-              // do table lookup and write results to txdataF2
-              for (aa=0; aa<PHY_vars_eNB[kk]->lte_frame_parms.nb_antennas_tx; aa++) {
-                ind = 0;
-
-                for (i=0; i<FRAME_LENGTH_COMPLEX_SAMPLES_NO_PREFIX; i++)
-                  if (((i%512)>=1) && ((i%512)<=150)) {
-                    txdataF2_eNB[kk][aa][i] = ((int*)mod_table)[PHY_vars_eNB[kk]->lte_eNB_common_vars.txdataF[eNB_id][aa][ind++]];
-                  } else if ((i%512)>=362) {
-                    txdataF2_eNB[kk][aa][i] = ((int*)mod_table)[PHY_vars_eNB[kk]->lte_eNB_common_vars.txdataF[eNB_id][aa][ind++]];
-                  } else {
-                    txdataF2_eNB[kk][aa][i] = 0;
-                  }
-              }
-
-              for (aa=0; aa<PHY_vars_UE[kk]->lte_frame_parms.nb_antennas_tx; aa++) {
-                ind = 0;
-
-                for (i=0; i<FRAME_LENGTH_COMPLEX_SAMPLES_NO_PREFIX; i++)
-                  if (((i%512)>=1) && ((i%512)<=150)) {
-                    txdataF2_UE[kk][aa][i] = ((int*)mod_table)[PHY_vars_UE[kk]->lte_ue_common_vars.txdataF[aa][ind++]];
-                  } else if ((i%512)>=362) {
-                    txdataF2_UE[kk][aa][i] = ((int*)mod_table)[PHY_vars_UE[kk]->lte_ue_common_vars.txdataF[aa][ind++]];
-                  } else {
-                    txdataF2_UE[kk][aa][i] = 0;
-                  }
-              }
-
-              tx_lev_eNB[kk] = 0;
-
-              for (aa=0; aa<PHY_vars_eNB[kk]->lte_frame_parms.nb_antennas_tx; aa++) {
-                if (frame_parms->Ncp == 1)
-                  PHY_ofdm_mod(&txdataF2_eNB[kk][aa][subframe_DL*nsymb*PHY_vars_eNB[kk]->lte_frame_parms.ofdm_symbol_size],        // input
-                               &txdata_eNB[kk][aa][subframe_DL*PHY_vars_eNB[kk]->lte_frame_parms.samples_per_tti],         // output
-                               PHY_vars_eNB[kk]->lte_frame_parms.log2_symbol_size,                // log2_fft_size
-                               2*nsymb,//NUMBER_OF_SYMBOLS_PER_FRAME,                 // number of symbols
-                               PHY_vars_eNB[kk]->lte_frame_parms.nb_prefix_samples,               // number of prefix samples
-                               PHY_vars_eNB[kk]->lte_frame_parms.twiddle_ifft,  // IFFT twiddle factors
-                               PHY_vars_eNB[kk]->lte_frame_parms.rev,           // bit-reversal permutation
-                               CYCLIC_PREFIX);
-                else {
-                  normal_prefix_mod(&txdataF2_eNB[kk][aa][subframe_DL*nsymb*PHY_vars_eNB[kk]->lte_frame_parms.ofdm_symbol_size],
-                                    &txdata_eNB[kk][aa][subframe_DL*PHY_vars_eNB[kk]->lte_frame_parms.samples_per_tti],
-                                    2*nsymb,
-                                    frame_parms);
-                }
-
-                tx_lev_eNB[kk] += signal_energy(&txdata_eNB[kk][aa][(PHY_vars_eNB[kk]->lte_frame_parms.ofdm_symbol_size+PHY_vars_eNB[kk]->lte_frame_parms.nb_prefix_samples0)],
-                                                OFDM_SYMBOL_SIZE_COMPLEX_SAMPLES);
-              }
-
-#else //IFFT_FPGA
-
-              //Precoding
-              if ((P_eNb_active == 1) && (kk == 1)) {
-
-                for (aa=0; aa<PHY_vars_eNB[kk]->lte_frame_parms.nb_antennas_tx; aa++) {
-
-                  // write_output("txaF.m","txaF11", &PHY_vars_eNB[kk]->lte_eNB_common_vars.txdataF[eNB_id][0][0],(subframe_DL+1)*nsymb*PHY_vars_eNB[0]->lte_frame_parms.ofdm_symbol_size,1,1);
-
-                  /*
-                  for (i=0; i<10; i++) {
-                    printf("PHY_vars_eNB[%d]=%d\n", i, PHY_vars_eNB[kk]->lte_eNB_common_vars.txdataF[eNB_id][0][i+subframe_DL*nsymb*PHY_vars_eNB[kk]->lte_frame_parms.ofdm_symbol_size]);
-                    printf("PHY_vars_eNB[%d]=%d\n", i, ((short *)PHY_vars_eNB[kk]->lte_eNB_common_vars.txdataF[eNB_id][0])[2*i+2*subframe_DL*nsymb*PHY_vars_eNB[kk]->lte_frame_parms.ofdm_symbol_size]);
-                    printf("PHY_vars_eNB[%d]=%d\n", i, ((short *)PHY_vars_eNB[kk]->lte_eNB_common_vars.txdataF[eNB_id][0])[2*i+1+2*subframe_DL*nsymb*PHY_vars_eNB[kk]->lte_frame_parms.ofdm_symbol_size]);
-                  }*/
-                  do_precoding(PHY_vars_eNB[kk], PHY_vars_UE[kk], PeNb_factor, prec, Norm, nsymb, UE_id, aa);
-
-                  //for (i=0; i<10; i++)
-                  //printf("Norm[%d] = %d\n", i, prec[2*i]);
-
-                  //printf("subframe_DL*nsymb*PHY_vars_eNB[kk]->lte_frame_parms.ofdm_symbol_size = %d\n", subframe_DL*nsymb*PHY_vars_eNB[kk]->lte_frame_parms.ofdm_symbol_size);
-
-                  //for (i=0; i<10; i++)
-                  //printf("enb[%d] = %d\n", i, ((short *)PHY_vars_eNB[kk]->lte_eNB_common_vars.txdataF[eNB_id][0])[2*i+subframe_DL*nsymb*PHY_vars_eNB[kk]->lte_frame_parms.ofdm_symbol_size]);
-
-
-                  for (i=0; i<nsymb*PHY_vars_eNB[kk]->lte_frame_parms.ofdm_symbol_size; i++) {
-
-                    if ((prec[2*i]*prec[2*i] + prec[2*i+1]*prec[2*i+1]) != 0) {
-                      ((short *)PHY_vars_eNB[kk]->lte_eNB_common_vars.txdataF[eNB_id][aa])[2*i+2*subframe_DL*nsymb*PHY_vars_eNB[kk]->lte_frame_parms.ofdm_symbol_size] = (short)(((((
-                            short *)PHY_vars_eNB[kk]->lte_eNB_common_vars.txdataF[eNB_id][aa])[2*i+2*subframe_DL*nsymb*PHY_vars_eNB[kk]->lte_frame_parms.ofdm_symbol_size]*prec[2*i] + ((
-                                  short *)PHY_vars_eNB[kk]->lte_eNB_common_vars.txdataF[eNB_id][aa])[2*i+1+2*subframe_DL*nsymb*PHY_vars_eNB[kk]->lte_frame_parms.ofdm_symbol_size]*prec[2*i+1]))/
-                          (prec[2*i]*prec[2*i] + prec[2*i+1]*prec[2*i+1]));
-                      ((short *)PHY_vars_eNB[kk]->lte_eNB_common_vars.txdataF[eNB_id][aa])[2*i+1+2*subframe_DL*nsymb*PHY_vars_eNB[kk]->lte_frame_parms.ofdm_symbol_size] = (short)(((((
-                            short *)PHY_vars_eNB[kk]->lte_eNB_common_vars.txdataF[eNB_id][aa])[2*i+1+2*subframe_DL*nsymb*PHY_vars_eNB[kk]->lte_frame_parms.ofdm_symbol_size]*prec[2*i] - ((
-                                  short *)PHY_vars_eNB[kk]->lte_eNB_common_vars.txdataF[eNB_id][aa])[2*i+2*subframe_DL*nsymb*PHY_vars_eNB[kk]->lte_frame_parms.ofdm_symbol_size]*prec[2*i+1]))/
-                          (prec[2*i]*prec[2*i] + prec[2*i+1]*prec[2*i+1]));
-                    }
-                  }
-
-                  /*for (i=100; i<110; i++) {
-                    printf("PHY_vars_eNB[%d]=%d\n", i, PHY_vars_eNB[kk]->lte_eNB_common_vars.txdataF[eNB_id][0][i+subframe_DL*nsymb*PHY_vars_eNB[kk]->lte_frame_parms.ofdm_symbol_size]);
-                    printf("PHY_vars_eNB[%d]=%d\n", i, ((short *)PHY_vars_eNB[kk]->lte_eNB_common_vars.txdataF[eNB_id][0])[2*i+2*subframe_DL*nsymb*PHY_vars_eNB[kk]->lte_frame_parms.ofdm_symbol_size]);
-                    printf("PHY_vars_eNB[%d]=%d\n", i, ((short *)PHY_vars_eNB[kk]->lte_eNB_common_vars.txdataF[eNB_id][0])[2*i+1+2*subframe_DL*nsymb*PHY_vars_eNB[kk]->lte_frame_parms.ofdm_symbol_size]);
-                    printf("PREC[%d]=%d\n", i, prec[2*i]);
-                    printf("PREC[%d]=%d\n", i, prec[2*i+1]);
-                    //printf("Norm[%d] = %d\n", i, (short)Norm[2*i]);
-                    //printf("Norm[%d] = %f\n", i, Norm[2*i]);
-                        }
-
-                   exit(-1);*/
-                }//aa
-              }//if
-
-              //write_output("txaF.m","txaF", PHY_vars_eNB[kk]->lte_eNB_common_vars.txdataF[eNB_id][0],nsymb*PHY_vars_eNB[0]->lte_frame_parms.ofdm_symbol_size,1,1);
-
-              tx_lev_eNB[kk] = 0;
-
-              for (aa=0; aa<PHY_vars_eNB[kk]->lte_frame_parms.nb_antennas_tx; aa++) {
-                if (frame_parms->Ncp == 1)
-                  PHY_ofdm_mod(&PHY_vars_eNB[kk]->lte_eNB_common_vars.txdataF[eNB_id][aa][subframe_DL*nsymb*PHY_vars_eNB[kk]->lte_frame_parms.ofdm_symbol_size],        // input
-                               &txdata_eNB[kk][aa][subframe_DL*PHY_vars_eNB[kk]->lte_frame_parms.samples_per_tti],         // output
-                               PHY_vars_eNB[kk]->lte_frame_parms.log2_symbol_size,                // log2_fft_size
-                               2*nsymb,//NUMBER_OF_SYMBOLS_PER_FRAME,                 // number of symbols
-                               PHY_vars_eNB[kk]->lte_frame_parms.nb_prefix_samples,               // number of prefix samples
-                               PHY_vars_eNB[kk]->lte_frame_parms.twiddle_ifft,  // IFFT twiddle factors
-                               PHY_vars_eNB[kk]->lte_frame_parms.rev,           // bit-reversal permutation
-                               CYCLIC_PREFIX);
-                else {
-                  normal_prefix_mod(&PHY_vars_eNB[kk]->lte_eNB_common_vars.txdataF[eNB_id][aa][subframe_DL*nsymb*PHY_vars_eNB[kk]->lte_frame_parms.ofdm_symbol_size],
-                                    &txdata_eNB[kk][aa][subframe_DL*PHY_vars_eNB[kk]->lte_frame_parms.samples_per_tti],
-                                    2*nsymb,
-                                    frame_parms);
-                }
-
-                tx_lev_eNB[kk] += signal_energy(&txdata_eNB[kk][aa][subframe_DL*PHY_vars_eNB[kk]->lte_frame_parms.samples_per_tti],
-                                                PHY_vars_eNB[kk]->lte_frame_parms.samples_per_tti);
-              }
-
-#endif //IFFT_FPGA
-              tx_lev_eNB_dB[kk] = (unsigned int) dB_fixed(tx_lev_eNB[kk]);
-
-            }// input_fd
-            else {  // Read signal from file
-              i=0;
-
-              while (!feof(input_fd)) {
-                fscanf(input_fd,"%s %s",input_val_str,input_val_str2);
-
-                if ((i%4)==0) {
-                  ((short*)txdata_eNB[kk][0])[i/2] = (short)((1<<15)*strtod(input_val_str,NULL));
-                  ((short*)txdata_eNB[kk][0])[(i/2)+1] = (short)((1<<15)*strtod(input_val_str2,NULL));
-
-                  if ((i/4)<100)
-                    printf("sample %d => %e + j%e (%d +j%d)\n",i/4,strtod(input_val_str,NULL),strtod(input_val_str2,NULL),((short*)txdata_eNB[kk][0])[i/4],((short*)txdata_eNB[kk][0])[(i/4)+1]);//1,input_val2,);
-                }
-
-                i++;
-
-                if (i>(FRAME_LENGTH_SAMPLES))
-                  break;
-              }
-
-              printf("Read in %d samples\n",i/4);
-
-              tx_lev_eNB[kk] = signal_energy(&txdata_eNB[kk][0][0],
-                                             OFDM_SYMBOL_SIZE_COMPLEX_SAMPLES);
-              tx_lev_eNB_dB[kk] = (unsigned int) dB_fixed(tx_lev_eNB[kk]);
-            }// else read from file
-
-            for (i=0; i<2*nsymb*OFDM_SYMBOL_SIZE_COMPLEX_SAMPLES; i++) {
-              for (aa=0; aa<PHY_vars_eNB[kk]->lte_frame_parms.nb_antennas_tx; aa++) {
-                if (awgn_flag == 0) {
-                  s_re_eNB[kk][aa][i] = ((double)(((short *)txdata_eNB[kk][aa]))[(2*subframe_DL*PHY_vars_UE[kk]->lte_frame_parms.samples_per_tti) + (i<<1)]);
-                  s_im_eNB[kk][aa][i] = ((double)(((short *)txdata_eNB[kk][aa]))[(2*subframe_DL*PHY_vars_UE[kk]->lte_frame_parms.samples_per_tti) +(i<<1)+1]);
-                } else {
-                  for (aarx=0; aarx<PHY_vars_UE[kk]->lte_frame_parms.nb_antennas_rx; aarx++) {
-                    for (ll=0; ll<2; ll++) {
-                      if (ll==kk) {
-                        if (aa==0) {
-                          r_re_eNB[kk][ll][aarx][i] = ((double)(((short *)txdata_eNB[kk][aa]))[(2*subframe_DL*PHY_vars_UE[kk]->lte_frame_parms.samples_per_tti) +(i<<1)]);
-                          r_im_eNB[kk][ll][aarx][i] = ((double)(((short *)txdata_eNB[kk][aa]))[(2*subframe_DL*PHY_vars_UE[kk]->lte_frame_parms.samples_per_tti) +(i<<1)+1]);
-                        } else {
-                          r_re_eNB[kk][ll][aarx][i] += ((double)(((short *)txdata_eNB[kk][aa]))[(2*subframe_DL*PHY_vars_UE[kk]->lte_frame_parms.samples_per_tti) +(i<<1)]);
-                          r_im_eNB[kk][ll][aarx][i] += ((double)(((short *)txdata_eNB[kk][aa]))[(2*subframe_DL*PHY_vars_UE[kk]->lte_frame_parms.samples_per_tti) +(i<<1)+1]);
-                        }
-                      } else {
-                        r_re_eNB[kk][ll][aarx][i] = 0;
-                        r_im_eNB[kk][ll][aarx][i] = 0;
-                      }
-                    }
-                  }
-                }
-
-                r_re_2eNB[kk][aa][i] = 0;
-                r_im_2eNB[kk][aa][i] = 0;
-              }
-            }
-
-            // filtre RF tx -> s_re
-            if ((decalibration == 1) && (kk == 1)) {
-              for (aa=0; aa<PHY_vars_eNB[kk]->lte_frame_parms.nb_antennas_tx; aa++) {
-                real_fir(s_re_eNB[kk][aa], s_im_eNB[kk][aa], s_re_out, s_im_out, s_coeffs_eNB, s_ord_fir_eNB, 2*nsymb*OFDM_SYMBOL_SIZE_COMPLEX_SAMPLES);
-
-                for (i=0; i<2*nsymb*OFDM_SYMBOL_SIZE_COMPLEX_SAMPLES; i++) {
-                  s_re_eNB[kk][aa][i] = s_re_out[i];
-                  s_im_eNB[kk][aa][i] = s_im_out[i];
-                }
-              }
-            }
-
-            //  n0_pow_dB = tx_lev_dB + 10*log10(512/(NB_RB*12)) + SNR;
-            // generate new channel if pmi_feedback==0, otherwise hold channel
-            for (ll=0; ll<2; ll++) {
-              if(abstx) {
-                if (trials==0 && round_eNB[kk]==0) {
-                  if (awgn_flag == 0) {
-
-                    if(SNR==snr0) {
-                      if(pmi_feedback==0)
-                        multipath_channel(eNB2UE[kk][ll],s_re_eNB[kk],s_im_eNB[kk],r_re_eNB[kk][ll],r_im_eNB[kk][ll],
-                                          2*nsymb*OFDM_SYMBOL_SIZE_COMPLEX_SAMPLES,1);
-                      else
-                        multipath_channel(eNB2UE[kk][ll],s_re_eNB[kk],s_im_eNB[kk],r_re_eNB[kk][ll],r_im_eNB[kk][ll],
-                                          2*nsymb*OFDM_SYMBOL_SIZE_COMPLEX_SAMPLES,1);//b
-                    } else {
-                      multipath_channel(eNB2UE[kk][ll],s_re_eNB[kk],s_im_eNB[kk],r_re_eNB[kk][ll],r_im_eNB[kk][ll],
-                                        2*nsymb*OFDM_SYMBOL_SIZE_COMPLEX_SAMPLES,1);
-                    }
-
-                    freq_channel(eNB2UE[kk][ll], 25,51);
-                    snr=pow(10.0,.1*SNR);
-                    fprintf(csv_fd,"%f,",SNR);
-
-                    for (u=0; u<50; u++) {
-                      abs_channel = (eNB2UE[kk][ll]->chF[0][u].x*eNB2UE[kk][ll]->chF[0][u].x + eNB2UE[kk][ll]->chF[0][u].y*eNB2UE[kk][ll]->chF[0][u].y);
-
-                      if(transmission_mode==5) {
-                        fprintf(csv_fd,"%e,",abs_channel);
-                      } else {
-                        pilot_sinr = 10*log10(snr*abs_channel);
-                        fprintf(csv_fd,"%e,",pilot_sinr);
-                      }
-                    }
-                  }
-                }
-
-                else {
-                  if (awgn_flag == 0) {
-                    multipath_channel(eNB2UE[kk][ll],s_re_eNB[kk],s_im_eNB[kk],r_re_eNB[kk][ll],r_im_eNB[kk][ll],
-                                      2*nsymb*OFDM_SYMBOL_SIZE_COMPLEX_SAMPLES,1);
-                  }
-                }
-              }
-
-              else { //ABStraction
-                if (awgn_flag == 0) {
-
-                  if (pmi_feedback==0) {
-                    if (trials<n_K-1)
-                      multipath_channel(eNB2UE[kk][ll],s_re_eNB[kk],s_im_eNB[kk],r_re_eNB[kk][ll],r_im_eNB[kk][ll],
-                                        2*nsymb*OFDM_SYMBOL_SIZE_COMPLEX_SAMPLES,1);//b
-                    else
-                      multipath_channel(eNB2UE[kk][ll],s_re_eNB[kk],s_im_eNB[kk],r_re_eNB[kk][ll],r_im_eNB[kk][ll],
-                                        2*nsymb*OFDM_SYMBOL_SIZE_COMPLEX_SAMPLES,1);//b
-                  } else
-                    multipath_channel(eNB2UE[kk][ll],s_re_eNB[kk],s_im_eNB[kk],r_re_eNB[kk][ll],r_im_eNB[kk][ll],
-                                      2*nsymb*OFDM_SYMBOL_SIZE_COMPLEX_SAMPLES,1);//b
-                }
-              }//ABStraction
-
-              if ((phase_offset == 1) && (kk == 1) && (ll == 1)) {
-                for (aa=0; aa<PHY_vars_UE[kk]->lte_frame_parms.nb_antennas_rx; aa++) {
-                  phase_offsets(r_re_eNB[kk][ll][aa], r_im_eNB[kk][ll][aa], r_re_out, r_im_out, 2*nsymb*OFDM_SYMBOL_SIZE_COMPLEX_SAMPLES, &phase_in_DL, phase_inc, 1);
-
-                  for (i=0; i<2*nsymb*OFDM_SYMBOL_SIZE_COMPLEX_SAMPLES; i++) {
-                    r_re_eNB[kk][ll][aa][i] = r_re_out[i];
-                    r_im_eNB[kk][ll][aa][i] = r_im_out[i];
-                  }
-                }
-              }
-
-              // filtre RF rx -> r_re_eNB
-              if ((decalibration == 1) && (kk == 1) && (ll == 1)) {
-                for (aa=0; aa<PHY_vars_UE[kk]->lte_frame_parms.nb_antennas_rx; aa++) {
-                  real_fir(r_re_eNB[kk][ll][aa], r_im_eNB[kk][ll][aa], r_re_out, r_im_out, r_coeffs_eNB, r_ord_fir_eNB, 2*nsymb*OFDM_SYMBOL_SIZE_COMPLEX_SAMPLES);
-
-                  for (i=0; i<2*nsymb*OFDM_SYMBOL_SIZE_COMPLEX_SAMPLES; i++) {
-                    r_re_eNB[kk][ll][aa][i] = r_re_out[i];
-                    r_im_eNB[kk][ll][aa][i] = r_im_out[i];
-                  }
-                }
-              }
-            }//end ll
-          }//end kk
-
-          for (kk=0; kk<2; kk++) {
-            for (ll=0; ll<2; ll++) {
-              for (i=0; i<2*nsymb*OFDM_SYMBOL_SIZE_COMPLEX_SAMPLES; i++) {
-                for (aarx=0; aarx<PHY_vars_UE[kk]->lte_frame_parms.nb_antennas_rx; aarx++) {
-                  r_re_2eNB[kk][aarx][i] += r_re_eNB[ll][kk][aarx][i];
-                  r_im_2eNB[kk][aarx][i] += r_im_eNB[ll][kk][aarx][i];
-                }
-              }
-            }
-
-
-
-            sigma2_eNB_dB[kk] = 10*log10((double)tx_lev_eNB[kk]) +10*log10(PHY_vars_eNB[kk]->lte_frame_parms.ofdm_symbol_size/(NB_RB*12)) - SNR;
-
-            //AWGN
-            sigma2_eNB[kk] = pow(10,sigma2_eNB_dB[kk]/10);
-
-            if (pmi_feedback==0) {
-              for (i=0; i<2*nsymb*OFDM_SYMBOL_SIZE_COMPLEX_SAMPLES; i++) {
-                for (aa=0; aa<PHY_vars_UE[kk]->lte_frame_parms.nb_antennas_rx; aa++) {
-                  ((short*) PHY_vars_UE[kk]->lte_ue_common_vars.rxdata[aa])[(2*subframe_DL*PHY_vars_UE[kk]->lte_frame_parms.samples_per_tti)+2*i] =
-                    (short) (r_re_2eNB[kk][aa][i] + sqrt(sigma2_eNB[kk]/2)*gaussdouble(0.0,1.0));
-                  ((short*) PHY_vars_UE[kk]->lte_ue_common_vars.rxdata[aa])[(2*subframe_DL*PHY_vars_UE[kk]->lte_frame_parms.samples_per_tti)+2*i+1] =
-                    (short) (r_im_2eNB[kk][aa][i] + (iqim*r_re_2eNB[kk][aa][i]) + sqrt(sigma2_eNB[kk]/2)*gaussdouble(0.0,1.0));
-                }
-              }
-            } else {
-              for (i=0; i<2*nsymb*OFDM_SYMBOL_SIZE_COMPLEX_SAMPLES; i++) {
-                for (aa=0; aa<PHY_vars_UE[kk]->lte_frame_parms.nb_antennas_rx; aa++) {
-                  ((short*) PHY_vars_UE[kk]->lte_ue_common_vars.rxdata[aa])[(2*subframe_DL*PHY_vars_UE[kk]->lte_frame_parms.samples_per_tti)+2*i] = (short) (r_re_2eNB[kk][aa][i]);
-                  ((short*) PHY_vars_UE[kk]->lte_ue_common_vars.rxdata[aa])[(2*subframe_DL*PHY_vars_UE[kk]->lte_frame_parms.samples_per_tti)+2*i+1] = (short) (r_im_2eNB[kk][aa][i]);
-                }
-              }
-            }
-
-            // Inner receiver scheduling for 3 slots
-            for (Ns=(2*subframe_DL); Ns<((2*subframe_DL)+3); Ns++) {
-              for (l=0; l<pilot2; l++) {
-                slot_fep(PHY_vars_UE[kk],
-                         l,
-                         Ns%20,
-                         0,
-                         0);
-
-#ifdef PERFECT_CE
-
-                if (awgn_flag==0) {
-                  // fill in perfect channel estimates
-                  freq_channel(eNB2UE[kk][kk],PHY_vars_UE[kk]->lte_frame_parms.N_RB_DL,301);
-
-                  //write_output("channel.m","ch",desc1->ch[0],desc1->channel_length,1,8);
-                  //write_output("channelF.m","chF",desc1->chF[0],nb_samples,1,8);
-                  for(k=0; k<NUMBER_OF_eNB_MAX; k++) {
-                    for(aa=0; aa<PHY_vars_eNB[kk]->lte_frame_parms.nb_antennas_tx; aa++) {
-                      for (aarx=0; aarx<PHY_vars_UE[kk]->lte_frame_parms.nb_antennas_rx; aarx++) {
-                        for (i=0; i<frame_parms->N_RB_DL*12; i++) {
-                          ((int16_t *) PHY_vars_UE[kk]->lte_ue_common_vars.dl_ch_estimates[k][(aa<<1)+aarx])[2*i+(l*frame_parms->ofdm_symbol_size+LTE_CE_FILTER_LENGTH)*2]=(int16_t)(
-                                eNB2UE[kk][kk]->chF[aarx+(aa*PHY_vars_UE[kk]->lte_frame_parms.nb_antennas_rx)][i].x*AMP/2);
-                          ((int16_t *) PHY_vars_UE[kk]->lte_ue_common_vars.dl_ch_estimates[k][(aa<<1)+aarx])[2*i+1+(l*frame_parms->ofdm_symbol_size+LTE_CE_FILTER_LENGTH)*2]=(int16_t)(
-                                eNB2UE[kk][kk]->chF[aarx+(aa*PHY_vars_UE[kk]->lte_frame_parms.nb_antennas_rx)][i].y*AMP/2) ;
-                        }
-                      }
-                    }
-                  }
-                } else {
-                  for(aa=0; aa<PHY_vars_eNB[kk]->lte_frame_parms.nb_antennas_tx; aa++) {
-                    for (aarx=0; aarx<PHY_vars_UE[kk]->lte_frame_parms.nb_antennas_rx; aarx++) {
-                      for (i=0; i<frame_parms->N_RB_DL*12; i++) {
-                        ((int16_t *) PHY_vars_UE[kk]->lte_ue_common_vars.dl_ch_estimates[0][(aa<<1)+aarx])[2*i+(l*frame_parms->ofdm_symbol_size+LTE_CE_FILTER_LENGTH)*2]=AMP/2;
-                        ((int16_t *) PHY_vars_UE[kk]->lte_ue_common_vars.dl_ch_estimates[0][(aa<<1)+aarx])[2*i+1+(l*frame_parms->ofdm_symbol_size+LTE_CE_FILTER_LENGTH)*2]=0/2;
-                      }
-                    }
-                  }
-                }
-
-#endif
-
-                if (trials<=n_K) {
-
-                  do_quantization_UE(PHY_vars_UE[kk],
-                                     nsymb,
-                                     pilot1-1,
-                                     quant_v,
-                                     dl_ch_estimates[kk],
-                                     dec_f);
-                }
-
-              }//Ns
-            }//l
-          }//end kk
-
-
-          //**************************** UL Part ********************************************************
-          for (kk=0; kk<2; kk++) {
-            for (i=0; i<input_buffer_length_UE[kk]; i++)
-              input_buffer_UE[kk][i] = taus()&0xff;
-
-            //input_buffer_UE[kk][i]=(char)(dl_ch_estimates[kk][i]);
-
-            if (input_fd==NULL) {
-#ifdef OFDMA_ULSCH
-
-              if (srs_flag)
-                generate_srs_tx(PHY_vars_UE[kk],0,AMP,subframe_UL);
-
-              generate_drs_pusch(PHY_vars_UE[kk],0,AMP,subframe_UL,first_rb,nb_rb_UE);
-
-#else
-
-              if (srs_flag)
-                generate_srs_tx(PHY_vars_UE[kk],0,scfdma_amps[nb_rb_UE],subframe_UL);
-
-              generate_drs_pusch(PHY_vars_UE[kk],0,
-                                 scfdma_amps[nb_rb_UE],
-                                 subframe_UL,
-                                 PHY_vars_UE[kk]->ulsch_ue[0]->harq_processes[0]->first_rb,
-                                 PHY_vars_UE[kk]->ulsch_ue[0]->harq_processes[0]->nb_rb);
-#endif
-
-              //printf("harq_pid = %d\n\n",harq_pid);
-              if (ulsch_encoding(input_buffer_UE[kk], //prob
-                                 &PHY_vars_UE[kk]->lte_frame_parms,
-                                 PHY_vars_UE[kk]->ulsch_ue[0],
-                                 harq_pid[kk],
-                                 transmission_mode, // transmission mode
-                                 control_only_flag,
-                                 1// Nbundled
-                                )==-1) {
-                printf("ulsim.c Problem with ulsch_encoding\n");
-                exit(-1);
-              }
-
-#ifdef OFDMA_ULSCH
-              ulsch_modulation(PHY_vars_UE[kk]->lte_ue_common_vars.txdataF,AMP,subframe_UL,&PHY_vars_UE[kk]->lte_frame_parms,PHY_vars_UE[kk]->ulsch_ue[0],cooperation_flag);
-#else
-              //  printf("Generating PUSCH in subframe %d with amp %d, nb_rb %d\n",subframe,scfdma_amps[nb_rb_UE],nb_rb_UE);
-              ulsch_modulation(PHY_vars_UE[kk]->lte_ue_common_vars.txdataF,scfdma_amps[nb_rb_UE],
-                               subframe_UL,&PHY_vars_UE[kk]->lte_frame_parms,
-                               PHY_vars_UE[kk]->ulsch_ue[0],cooperation_flag);
-#endif
-
-#ifdef IFFT_FPGA
-
-              for (aa=0; aa<PHY_vars_UE[kk]->lte_frame_parms.nb_antennas_rx; aa++)  {
-                for (kk=0; kk<2; kk++) {// UE 0 and UE 1
-                  if (frame_parms->Ncp == 1)
-                    PHY_ofdm_mod(txdataF2_UE[kk][aa],        // input
-                                 txdata_UE[kk][aa],         // output
-                                 PHY_vars_UE[kk]->lte_frame_parms.log2_symbol_size,                // log2_fft_size
-                                 nsymb,                 // number of symbols
-                                 PHY_vars_UE[kk]->lte_frame_parms.nb_prefix_samples,               // number of prefix samples
-                                 PHY_vars_UE[kk]->lte_frame_parms.twiddle_ifft,  // IFFT twiddle factors
-                                 PHY_vars_UE[kk]->lte_frame_parms.rev,           // bit-reversal permutation
-                                 CYCLIC_PREFIX);
-                  else
-                    normal_prefix_mod(txdataF2_UE[kk][aa],txdata_UE[kk][aa],nsymb,frame_parms);
-                }
-              }
-
-#else //IFFT_FPGA 
-              tx_lev_UE[kk]=0;
-
-              for (aa=0; aa<PHY_vars_UE[kk]->lte_frame_parms.nb_antennas_rx; aa++) {
-                if (frame_parms->Ncp == 1)
-                  PHY_ofdm_mod(&PHY_vars_UE[kk]->lte_ue_common_vars.txdataF[aa][subframe_UL*nsymb*OFDM_SYMBOL_SIZE_COMPLEX_SAMPLES_NO_PREFIX],        // input
-                               &txdata_UE[kk][aa][PHY_vars_eNB[kk]->lte_frame_parms.samples_per_tti*subframe_UL],         // output
-                               PHY_vars_UE[kk]->lte_frame_parms.log2_symbol_size,                // log2_fft_size
-                               nsymb,                 // number of symbols
-                               PHY_vars_UE[kk]->lte_frame_parms.nb_prefix_samples,               // number of prefix samples
-                               PHY_vars_UE[kk]->lte_frame_parms.twiddle_ifft,  // IFFT twiddle factors
-                               PHY_vars_UE[kk]->lte_frame_parms.rev,           // bit-reversal permutation
-                               CYCLIC_PREFIX);
-                else
-                  normal_prefix_mod(&PHY_vars_UE[kk]->lte_ue_common_vars.txdataF[aa][subframe_UL*nsymb*OFDM_SYMBOL_SIZE_COMPLEX_SAMPLES_NO_PREFIX],
-                                    &txdata_UE[kk][aa][PHY_vars_eNB[kk]->lte_frame_parms.samples_per_tti*subframe_UL],
-                                    nsymb,
-                                    frame_parms);
-
-#ifndef OFDMA_ULSCH
-                apply_7_5_kHz(PHY_vars_UE[kk],subframe_UL<<1);
-                apply_7_5_kHz(PHY_vars_UE[kk],1+(subframe_UL<<1));
-#endif
-
-                tx_lev_UE[kk] += signal_energy(&txdata_UE[kk][aa][PHY_vars_eNB[kk]->lte_frame_parms.samples_per_tti*subframe_UL],
-                                               OFDM_SYMBOL_SIZE_COMPLEX_SAMPLES);
-
-              }
-
-#endif //IFFT_FPGA
-            } //input_fd
-
-            // multipath channel
-            tx_lev_UE_dB[kk] = (unsigned int) dB_fixed(tx_lev_UE[kk]);
-
-            for (i=0; i<PHY_vars_eNB[kk]->lte_frame_parms.samples_per_tti; i++) {
-              if (awgn_flag == 0) {
-                for (aarx=0; aarx<PHY_vars_UE[kk]->lte_frame_parms.nb_antennas_tx; aarx++) {
-                  s_re_UE[kk][aarx][i] = ((double)(((short *)&txdata_UE[kk][aarx][PHY_vars_eNB[kk]->lte_frame_parms.samples_per_tti*subframe_UL]))[(i<<1)]);
-                  s_im_UE[kk][aarx][i] = ((double)(((short *)&txdata_UE[kk][aarx][PHY_vars_eNB[kk]->lte_frame_parms.samples_per_tti*subframe_UL]))[(i<<1)+1]);
-                }
-              } else {
-                for (aa=0; aa<PHY_vars_eNB[kk]->lte_frame_parms.nb_antennas_rx; aa++) {
-                  for (ll=0; ll<2; ll++) {
-                    if (kk == ll) {
-                      r_re_UE[kk][ll][aa][i] = ((double)(((short *)&txdata_UE[kk][aa][PHY_vars_eNB[kk]->lte_frame_parms.samples_per_tti*subframe_UL]))[(i<<1)]);
-                      r_im_UE[kk][ll][aa][i] = ((double)(((short *)&txdata_UE[kk][aa][PHY_vars_eNB[kk]->lte_frame_parms.samples_per_tti*subframe_UL]))[(i<<1)+1]);
-                    } else {
-                      r_re_UE[kk][ll][aa][i] = 0;
-                      r_im_UE[kk][ll][aa][i] = 0;
-                    }
-                  }
-                }
-              }
-
-              for (aa=0; aa<PHY_vars_eNB[kk]->lte_frame_parms.nb_antennas_rx; aa++) {
-                r_re_2UE[kk][aa][i] = 0;
-                r_im_2UE[kk][aa][i] = 0;
-              }
-            }
-
-            // filtre RF tx -> s_re_UE
-            if ((decalibration == 1) && (kk == 1)) {
-              for (aa=0; aa<PHY_vars_UE[kk]->lte_frame_parms.nb_antennas_tx; aa++) {
-                real_fir(s_re_UE[kk][aa], s_im_UE[kk][aa], s_re_out, s_im_out, s_coeffs_UE, s_ord_fir_UE, PHY_vars_eNB[kk]->lte_frame_parms.samples_per_tti);
-
-                for (i=0; i<PHY_vars_eNB[kk]->lte_frame_parms.samples_per_tti; i++) {
-                  s_re_UE[kk][aa][i] = s_re_out[i];
-                  s_im_UE[kk][aa][i] = s_im_out[i];
-                }
-              }
-            }
-
-            if ((phase_offset == 1) && (kk == 1)) {
-              for (aa=0; aa<PHY_vars_UE[kk]->lte_frame_parms.nb_antennas_rx; aa++) {
-                phase_in_DL = phase_in_UL;
-                phase_offsets(s_re_UE[kk][aa], s_im_UE[kk][aa], s_re_out, s_im_out, PHY_vars_eNB[kk]->lte_frame_parms.samples_per_tti, &phase_in_UL, phase_inc, -1);
-
-                for (i=0; i<PHY_vars_eNB[kk]->lte_frame_parms.samples_per_tti; i++) {
-                  s_re_UE[kk][aa][i] = s_re_out[i];
-                  s_im_UE[kk][aa][i] = s_im_out[i];
-                }
-              }
-            }
-
-            for (ll=0; ll<2; ll++) {
-
-              if (awgn_flag == 0) {
-
-                if (trials<n_K-1)
-                  multipath_channel(UE2eNB[ll][kk],s_re_UE[ll],s_im_UE[ll],r_re_UE[ll][kk],r_im_UE[ll][kk],
-                                    PHY_vars_eNB[kk]->lte_frame_parms.samples_per_tti,1);
-                else
-                  multipath_channel(UE2eNB[ll][kk],s_re_UE[ll],s_im_UE[ll],r_re_UE[ll][kk],r_im_UE[ll][kk],
-                                    PHY_vars_eNB[kk]->lte_frame_parms.samples_per_tti,1);
-              }
-
-
-              // filtre RF rx -> r_re
-              if ((decalibration == 1) && (kk == 1) && (ll == 1)) {
-                for (aa=0; aa<PHY_vars_eNB[kk]->lte_frame_parms.nb_antennas_rx; aa++) {
-                  real_fir(r_re_UE[ll][kk][aa], r_im_UE[ll][kk][aa], r_re_out, r_im_out, r_coeffs_UE, r_ord_fir_UE, PHY_vars_eNB[kk]->lte_frame_parms.samples_per_tti);
-
-                  for (i=0; i<PHY_vars_eNB[kk]->lte_frame_parms.samples_per_tti; i++) {
-                    r_re_UE[ll][kk][aa][i] = r_re_out[i];
-                    r_im_UE[ll][kk][aa][i] = r_im_out[i];
-                  }
-                }
-              }
-            }// end ll
-          }//end kk
-
-          //**************************************************************************************
-
-
-          for (kk=0; kk<2; kk++) {
-            for (ll=0; ll<2; ll++) {
-              for (i=0; i<PHY_vars_eNB[kk]->lte_frame_parms.samples_per_tti; i++) {
-                for (aa=0; aa<PHY_vars_eNB[kk]->lte_frame_parms.nb_antennas_rx; aa++) {
-                  r_re_2UE[kk][aa][i] += r_re_UE[ll][kk][aa][i];
-                  r_im_2UE[kk][aa][i] += r_im_UE[ll][kk][aa][i];
-                }
-              }
-            }
-
-            sigma2_UE_dB[kk] = tx_lev_UE_dB[kk] +10*log10(PHY_vars_UE[kk]->lte_frame_parms.ofdm_symbol_size/(PHY_vars_UE[kk]->lte_frame_parms.N_RB_DL*12)) - SNR;
-            //AWGN
-            sigma2_UE[kk] = pow(10,sigma2_UE_dB[kk]/10);
-
-            for (i=0; i<PHY_vars_eNB[kk]->lte_frame_parms.samples_per_tti; i++) {
-              for (aa=0; aa<PHY_vars_eNB[kk]->lte_frame_parms.nb_antennas_rx; aa++) {
-                ((short*) &PHY_vars_eNB[kk]->lte_eNB_common_vars.rxdata[0][aa][PHY_vars_eNB[kk]->lte_frame_parms.samples_per_tti*subframe_UL])[2*i] = (short) (r_re_2UE[kk][aa][i] + sqrt(sigma2_UE[kk]/2)*gaussdouble(
-                      0.0,1.0));
-                ((short*) &PHY_vars_eNB[kk]->lte_eNB_common_vars.rxdata[0][aa][PHY_vars_eNB[kk]->lte_frame_parms.samples_per_tti*subframe_UL])[2*i+1] = (short) (r_im_2UE[kk][aa][i] +
-                    (iqim*r_re_2UE[kk][aa][i]) + sqrt(sigma2_UE[kk]/2)*gaussdouble(0.0,1.0));
-              }
-            }
-
-            i_mod = get_Qm(mcs_eNB);
-
-            // Inner receiver scheduling for 3 slots
-            for (Ns=(2*subframe_DL); Ns<((2*subframe_DL)+3); Ns++) {
-              for (l=0; l<pilot2; l++) {
-                if ((Ns==(2+(2*subframe_DL))) && (l==0)) {
-                  lte_ue_measurements(PHY_vars_UE[kk],
-                                      subframe_DL*PHY_vars_UE[kk]->lte_frame_parms.samples_per_tti,
-                                      1,
-                                      0);
-
-                  if (transmission_mode==5 || transmission_mode==6) {
-                    if (pmi_feedback==1) {
-                      pmi_feedback= 0;
-                      //        printf("measured PMI %x\n",pmi2hex_2Ar1(quantize_subband_pmi(&PHY_vars_UE->PHY_measurements,0)));
-                      goto PMI_FEEDBACK;
-                    }
-                  }
-
-                }
-
-
-                if ((Ns==(2*subframe_DL)) && (l==pilot1)) {// process symbols 0,1,2
-
-                  if (dci_flag == 1) {
-                    rx_pdcch(&PHY_vars_UE[kk]->lte_ue_common_vars,
-                             PHY_vars_UE[kk]->lte_ue_pdcch_vars,
-                             &PHY_vars_UE[kk]->lte_frame_parms,
-                             subframe_DL,
-                             0,
-                             (PHY_vars_UE[kk]->lte_frame_parms.mode1_flag == 1) ? SISO : ALAMOUTI,
-                             0);
-
-                    // overwrite number of pdcch symbols
-                    PHY_vars_UE[kk]->lte_ue_pdcch_vars[0]->num_pdcch_symbols = num_pdcch_symbols;
-
-                    dci_cnt = dci_decoding_procedure(PHY_vars_UE[kk],
-                                                     dci_alloc_rx,
-                                                     eNB_id,
-                                                     subframe_DL,
-                                                     SI_RNTI,
-                                                     RA_RNTI);
-                    //printf("dci_cnt %d\n",dci_cnt);
-
-                    if (dci_cnt==0) {
-                      dlsch_active = 0;
-
-                      if (round_eNB[kk]==0) {
-                        dci_errors[kk]++;
-                        round_eNB[kk]=5;
-                        errs_eNB[kk][0]++;
-                        round_trials_eNB[kk][0]++;
-                      }
-                    }
-
-                    for (i=0; i<dci_cnt; i++) {
-                      //printf("Generating dlsch parameters for RNTI %x\n",dci_alloc_rx[i].rnti);
-                      if ((dci_alloc_rx[i].rnti == n_rnti) &&
-                          (generate_ue_dlsch_params_from_dci(0,
-                                                             dci_alloc_rx[i].dci_pdu,
-                                                             dci_alloc_rx[i].rnti,
-                                                             dci_alloc_rx[i].format,
-                                                             PHY_vars_UE[kk]->dlsch_ue[0],
-                                                             &PHY_vars_UE[kk]->lte_frame_parms,
-                                                             SI_RNTI,
-                                                             RA_RNTI,
-                                                             P_RNTI)==0)) {
-                        //dump_dci(&PHY_vars_UE->lte_frame_parms,&dci_alloc_rx[i]);
-                        coded_bits_per_codeword = get_G(&PHY_vars_eNB[kk]->lte_frame_parms,
-                                                        PHY_vars_UE[kk]->dlsch_ue[0][0]->nb_rb,
-                                                        PHY_vars_UE[kk]->dlsch_ue[0][0]->rb_alloc,
-                                                        get_Qm(PHY_vars_UE[kk]->dlsch_ue[0][0]->harq_processes[PHY_vars_UE[kk]->dlsch_ue[0][0]->current_harq_pid]->mcs),
-                                                        PHY_vars_UE[kk]->lte_ue_pdcch_vars[0]->num_pdcch_symbols,
-                                                        subframe_DL);
-                        dlsch_active = 1;
-                      } else {
-                        dlsch_active = 0;
-
-                        if (round_eNB[kk]==0) {
-                          dci_errors[kk]++;
-                          errs_eNB[kk][0]++;
-                          round_trials_eNB[kk][0]++;
-
-                          if (n_frames==1) {
-                            printf("DCI misdetection trial %d\n",trials);
-                            round_eNB[kk]=5;
-                          }
-                        }
-                      }
-                    }
-                  }  // if dci_flag==1
-                  else { //dci_flag == 0
-
-                    PHY_vars_UE[kk]->lte_ue_pdcch_vars[0]->crnti = n_rnti;
-                    PHY_vars_UE[kk]->lte_ue_pdcch_vars[0]->num_pdcch_symbols = num_pdcch_symbols;
-
-                    generate_ue_dlsch_params_from_dci(0,
-                                                      &DLSCH_alloc_pdu2_2D[0],
-                                                      C_RNTI,
-                                                      format2_2D_M10PRB,
-                                                      PHY_vars_UE[kk]->dlsch_ue[0],
-                                                      &PHY_vars_UE[kk]->lte_frame_parms,
-                                                      SI_RNTI,
-                                                      RA_RNTI,
-                                                      P_RNTI);
-                    dlsch_active = 1;
-                  } // if dci_flag == 1
-                }
-
-                if (dlsch_active == 1) {
-                  if ((Ns==(1+(2*subframe_DL))) && (l==0)) {// process symbols 3,4,5
-
-                    for (m=PHY_vars_UE[kk]->lte_ue_pdcch_vars[0]->num_pdcch_symbols;
-                         m<pilot2;
-                         m++) {
-                      if (rx_dlsch(&PHY_vars_UE[kk]->lte_ue_common_vars,
-                                   PHY_vars_UE[kk]->lte_ue_dlsch_vars,
-                                   &PHY_vars_UE[kk]->lte_frame_parms,
-                                   eNB_id,
-                                   eNB_id_i,
-                                   PHY_vars_UE[kk]->dlsch_ue[0],
-                                   subframe_DL,
-                                   m,
-                                   (m==PHY_vars_UE[kk]->lte_ue_pdcch_vars[0]->num_pdcch_symbols)?1:0,
-                                   dual_stream_UE,
-                                   &PHY_vars_UE[kk]->PHY_measurements,
-                                   i_mod)==-1) {
-
-                        dlsch_active = 0;
-                        break;
-                      }
-                    }
-
-                  }
-
-                  if ((Ns==(1+(2*subframe_DL))) && (l==pilot1)) {// process symbols 6,7,8
-
-                    for (m=pilot2;
-                         m<pilot3;
-                         m++)
-                      if (rx_dlsch(&PHY_vars_UE[kk]->lte_ue_common_vars,
-                                   PHY_vars_UE[kk]->lte_ue_dlsch_vars,
-                                   &PHY_vars_UE[kk]->lte_frame_parms,
-                                   eNB_id,
-                                   eNB_id_i,
-                                   PHY_vars_UE[kk]->dlsch_ue[0],
-                                   subframe_DL,
-                                   m,
-                                   0,
-                                   dual_stream_UE,
-                                   &PHY_vars_UE[kk]->PHY_measurements,
-                                   i_mod)==-1) {
-                        dlsch_active=0;
-                        break;
-                      }
-                  }
-
-                  if ((Ns==(2+(2*subframe_DL))) && (l==0))  // process symbols 10,11, do deinterleaving for TTI
-                    for (m=pilot3;
-                         m<PHY_vars_UE[kk]->lte_frame_parms.symbols_per_tti;
-                         m++)
-                      if (rx_dlsch(&PHY_vars_UE[kk]->lte_ue_common_vars,
-                                   PHY_vars_UE[kk]->lte_ue_dlsch_vars,
-                                   &PHY_vars_UE[kk]->lte_frame_parms,
-                                   eNB_id,
-                                   eNB_id_i,
-                                   PHY_vars_UE[kk]->dlsch_ue[0],
-                                   subframe_DL,
-                                   m,
-                                   0,
-                                   dual_stream_UE,
-                                   &PHY_vars_UE[kk]->PHY_measurements,
-                                   i_mod)==-1) {
-                        dlsch_active=0;
-                        break;
-                      }
-
-                  if ((SNR==snr0) && (llb==0))  {
-                    llb=1;
-
-
-                    dump_dlsch2(PHY_vars_UE[kk],eNB_id,coded_bits_per_codeword);
-                    dump_dlsch2(PHY_vars_UE[kk],eNB_id_i,coded_bits_per_codeword);
-                    write_output("dlsch_e.m","e",PHY_vars_eNB[kk]->dlsch_eNB[0][0]->e,coded_bits_per_codeword,1,4);
-                  }
-
-                }
-              }
-            }
-
-            // calculate uncoded BLER
-            uncoded_ber[kk]=0;
-
-            for (i=0; i<coded_bits_per_codeword; i++)
-              if (PHY_vars_eNB[kk]->dlsch_eNB[0][0]->e[i] != (PHY_vars_UE[kk]->lte_ue_dlsch_vars[0]->llr[0][i]<0)) {
-                uncoded_ber_bit[i] = 1;
-                uncoded_ber[kk]++;
-              } else
-                uncoded_ber_bit[i] = 0;
-
-            uncoded_ber[kk]/=coded_bits_per_codeword;
-            avg_ber[kk] += uncoded_ber[kk];
-
-            //imran
-            if(abstx) {
-              if (trials<10 && round_eNB[kk]==0 && transmission_mode==5) {
-                for (iii=0; iii<NB_RB; iii++) {
-                  //fprintf(csv_fd, "%d, %d", (PHY_vars_UE->lte_ue_dlsch_vars[eNB_id]->pmi_ext[iii]),(PHY_vars_UE->lte_ue_dlsch_vars[eNB_id_i]->pmi_ext[iii]));
-                  msg(" %x",(PHY_vars_UE[kk]->lte_ue_dlsch_vars[eNB_id]->pmi_ext[iii]));
-                  // msg("Opposite Extracted pmi %x\n",(PHY_vars_UE->lte_ue_dlsch_vars[eNB_id_i]->pmi_ext[iii]));
-
-                }
-              }
-            }
-
-
-            PHY_vars_UE[kk]->dlsch_ue[0][0]->rnti = n_rnti;
-            dlsch_unscrambling(&PHY_vars_UE[kk]->lte_frame_parms,
-                               PHY_vars_UE[kk]->lte_ue_pdcch_vars[0]->num_pdcch_symbols,
-                               PHY_vars_UE[kk]->dlsch_ue[0][0],
-                               coded_bits_per_codeword,
-                               PHY_vars_UE[kk]->lte_ue_dlsch_vars[eNB_id]->llr[0],
-                               0,
-                               subframe_DL<<1);
-
-
-            ret_eNB[kk] = dlsch_decoding(PHY_vars_UE[kk]->lte_ue_dlsch_vars[eNB_id]->llr[0],
-                                         &PHY_vars_UE[kk]->lte_frame_parms,
-                                         PHY_vars_UE[kk]->dlsch_ue[0][0],
-                                         subframe_DL,
-                                         PHY_vars_UE[kk]->lte_ue_pdcch_vars[0]->num_pdcch_symbols);
-
-#ifdef XFORMS
-            do_forms(form,
-                     &PHY_vars_UE[kk]->lte_frame_parms,
-                     PHY_vars_UE[kk]->lte_ue_common_vars.dl_ch_estimates_time,
-                     PHY_vars_UE[kk]->lte_ue_common_vars.dl_ch_estimates[eNB_id],
-                     PHY_vars_UE[kk]->lte_ue_common_vars.rxdata,
-                     PHY_vars_UE[kk]->lte_ue_common_vars.rxdataF,
-                     PHY_vars_UE[kk]->lte_ue_dlsch_vars[0]->rxdataF_comp[0],
-                     PHY_vars_UE[kk]->lte_ue_dlsch_vars[3]->rxdataF_comp[0],
-                     PHY_vars_UE[kk]->lte_ue_dlsch_vars[0]->dl_ch_rho_ext[0],
-                     PHY_vars_UE[kk]->lte_ue_dlsch_vars[0]->llr[0],coded_bits_per_codeword);
-#endif
-
-            if (ret_eNB[kk] <= MAX_TURBO_ITERATIONS) {
-              if (fix_rounds==0)
-                round_eNB[kk]=5;
-              else
-                round_eNB[kk]++;
-            } else {
-              errs_eNB[kk][round_eNB[kk]]++;
-              round_eNB[kk]++;
-            }
-
-            //********************** DL part end
-
-            //********************** DL Channel Feedback
-
-            //****************************** UL Decoding Proc
-
-            //modif start UL
-            SNRmeas[kk] = 10*log10(((double)signal_energy((int*)&PHY_vars_eNB[kk]->lte_eNB_common_vars.rxdata[0][0][160+(PHY_vars_eNB[kk]->lte_frame_parms.samples_per_tti*subframe_UL)],
-                                    OFDM_SYMBOL_SIZE_COMPLEX_SAMPLES/2))/((double)signal_energy((int*)&PHY_vars_eNB[kk]->lte_eNB_common_vars.rxdata[0][0][160+(PHY_vars_eNB[kk]->lte_frame_parms.samples_per_tti*(1+subframe_UL))],
-                                        OFDM_SYMBOL_SIZE_COMPLEX_SAMPLES/2)) - 1);
-
-#ifndef OFDMA_ULSCH
-            remove_7_5_kHz(PHY_vars_eNB[kk],subframe_UL<<1);
-            remove_7_5_kHz(PHY_vars_eNB[kk],1+(subframe_UL<<1));
-#endif
-
-            for (l=subframe_UL*PHY_vars_UE[kk]->lte_frame_parms.symbols_per_tti; l<((1+subframe_UL)*PHY_vars_UE[kk]->lte_frame_parms.symbols_per_tti); l++) {
-
-              slot_fep_ul(&PHY_vars_eNB[kk]->lte_frame_parms,
-                          &PHY_vars_eNB[kk]->lte_eNB_common_vars,
-                          l%(PHY_vars_eNB[kk]->lte_frame_parms.symbols_per_tti/2),
-                          l/(PHY_vars_eNB[kk]->lte_frame_parms.symbols_per_tti/2),
-                          0,
-                          0);
-            }
-
-
-
-            PHY_vars_eNB[kk]->ulsch_eNB[0]->cyclicShift = cyclic_shift;// cyclic shift for DMRS
-            rx_ulsch(PHY_vars_eNB[kk],
-                     subframe_UL,
-                     0,  // this is the effective sector id
-                     0,  // this is the UE_id
-                     PHY_vars_eNB[kk]->ulsch_eNB,
-                     cooperation_flag);
-
-            ret_UE[kk]= ulsch_decoding(PHY_vars_eNB[kk],
-                                       0, // UE_id
-                                       subframe_UL,
-                                       control_only_flag,
-                                       1  // Nbundled
-                                      );
-
-            if (ret_UE[kk] <= MAX_TURBO_ITERATIONS)
-              round_UE[kk]=5;
-            else {
-              errs_UE[kk][round_UE[kk]]++;
-              round_UE[kk]++;
-            }  // ulsch error
-
-            if (trials<=n_K) {
-              do_quantization_eNB(PHY_vars_eNB[kk],
-                                  PHY_vars_UE[kk],
-                                  nsymb,
-                                  pilot1-1, //pilot ant 0
-                                  pilot1, //pilot ant 1
-                                  quant_v,
-                                  drs_ch_estimates[kk],
-                                  UE_id);
-            }
-          }//end kk
-
-          // Calibration
-          if (trials <= n_K) {
-
-            for (aa=0; aa<PHY_vars_eNB[1]->lte_frame_parms.nb_antennas_rx; aa++)
-              for (k=0; k<2*300; k++) {
-                K_dl_ch_estimates[trials][aa][k] = dl_ch_estimates[1][k+aa*2*300];
-                K_drs_ch_estimates[trials][aa][k] = drs_ch_estimates[1][k+aa*2*300];
-              }
-
-          } else if ( (trials>n_K) && (P_eNb_active==0)) {
-
-            do_calibration (K_dl_ch_estimates,
-                            K_drs_ch_estimates,
-                            PeNb_factor,
-                            PHY_vars_eNB[1]->lte_frame_parms.ofdm_symbol_size,
-                            n_K);
-
-            P_eNb_active=1;
-
-
-            //write_output("cal1.m","cal", PeNb_factor[1],600,1,8);
-
-            //write_output("aue1.m","aue", drs_ch_estimates[0],1200,1,1);
-            //write_output("aenb1.m","aenb", dl_ch_estimates[0],1200,1,1);
-            //write_output("vulb0.m","vul0", PHY_vars_eNB[1]->lte_eNB_ulsch_vars[0]->drs_ch_estimates[UE_id][0],5000,1,1);
-            //write_output("vulb.m","vul", PHY_vars_eNB[1]->lte_eNB_ulsch_vars[0]->drs_ch_estimates[UE_id][1],5000,1,1);
-            //write_output("vdlb.m","vdl", PHY_vars_UE[1]->lte_ue_common_vars.dl_ch_estimates[eNB_id][0], 5000,1,1);
-
-            //exit(-1);
-
-          }
-
-          //modif end UL
-
-        }  //round
-
-        //if ((errs_eNB[0]>=100) && (trials>(n_frames/2)) && (errs_UE[0]>=100) )
-        //  break;  //b
-
-      }   //trials
-
-      for (kk=0; kk<2; kk++) {
-        printf("\n*******DL %d *************SNR = %f dB (tx_lev_eNB %f, sigma2_eNB_dB %f)************DL************\n",
-               kk,
-               SNR,
-               (double)tx_lev_eNB_dB[kk]+10*log10(PHY_vars_UE[kk]->lte_frame_parms.ofdm_symbol_size/(NB_RB*12)),
-               sigma2_eNB_dB[kk]);
-
-        printf("Errors (%d/%d %d/%d %d/%d %d/%d), Pe = (%e,%e,%e,%e), dci_errors %d/%d, Pe = %e => effective rate %f (%f), normalized delay %f (%f), uncoded_ber %f\n",
-               errs_eNB[kk][0],
-               round_trials_eNB[kk][0],
-               errs_eNB[kk][1],
-               round_trials_eNB[kk][1],
-               errs_eNB[kk][2],
-               round_trials_eNB[kk][2],
-               errs_eNB[kk][3],
-               round_trials_eNB[kk][3],
-               (double)errs_eNB[kk][0]/(round_trials_eNB[kk][0]),
-               (double)errs_eNB[kk][1]/(round_trials_eNB[kk][1]),
-               (double)errs_eNB[kk][2]/(round_trials_eNB[kk][2]),
-               (double)errs_eNB[kk][3]/(round_trials_eNB[kk][3]),
-               dci_errors[kk],
-               round_trials_eNB[kk][0],
-               (double)dci_errors[kk]/(round_trials_eNB[kk][0]),
-               rate_eNB*((double)(round_trials_eNB[kk][0]-dci_errors[kk])/((double)round_trials_eNB[kk][0] + round_trials_eNB[kk][1] + round_trials_eNB[kk][2] + round_trials_eNB[kk][3])),
-               rate_eNB,
-               (1.0*(round_trials_eNB[kk][0]-errs_eNB[kk][0])+2.0*(round_trials_eNB[kk][1]-errs_eNB[kk][1])+3.0*(round_trials_eNB[kk][2]-errs_eNB[kk][2])+4.0*(round_trials_eNB[kk][3]-errs_eNB[kk][3]))/((
-                     double)round_trials_eNB[kk][0])/(double)PHY_vars_eNB[kk]->dlsch_eNB[0][0]->harq_processes[0]->TBS,
-               (1.0*(round_trials_eNB[kk][0]-errs_eNB[kk][0])+2.0*(round_trials_eNB[kk][1]-errs_eNB[kk][1])+3.0*(round_trials_eNB[kk][2]-errs_eNB[kk][2])+4.0*(round_trials_eNB[kk][3]-errs_eNB[kk][3]))/((
-                     double)round_trials_eNB[kk][0]),
-               avg_ber[kk]/round_trials_eNB[kk][0]);
-
-        fprintf(bler_fd,"%f;%d;%d;%f;%d;%d;%d;%d;%d;%d;%d;%d;%d;%f\n",
-                SNR,
-                mcs_eNB,
-                PHY_vars_eNB[kk]->dlsch_eNB[0][0]->harq_processes[0]->TBS,
-                rate_eNB,
-                errs_eNB[kk][0],
-                round_trials_eNB[kk][0],
-                errs_eNB[kk][1],
-                round_trials_eNB[kk][1],
-                errs_eNB[kk][2],
-                round_trials_eNB[kk][2],
-                errs_eNB[kk][3],
-                round_trials_eNB[kk][3],
-                dci_errors[kk],
-                avg_ber[kk]/round_trials_eNB[kk][0]);
-
-        fprintf(tikz_fd,"(%f,%f)", SNR, (float)errs_eNB[kk][0]/round_trials_eNB[kk][0]);
-
-        if(abstx) { //ABSTRACTION
-          blerr= (double)errs_eNB[kk][0]/(round_trials_eNB[kk][0]);
-          fprintf(csv_fd,"%e;\n",blerr);
-        } //ABStraction
-
-        printf("\n++++++UL %d +++++++++++++SNR = %f dB (tx_UE_lev %f, sigma2_UE_dB %f)++++++++++++UL+++++++++++\n",
-               kk,
-               SNR,
-               (double)tx_lev_UE_dB[kk]+10*log10(PHY_vars_UE[kk]->lte_frame_parms.ofdm_symbol_size/(nb_rb_UE*12)),
-               sigma2_UE_dB[kk]);
-
-        printf("Errors (%d/%d %d/%d %d/%d %d/%d), Pe = (%e,%e,%e,%e) => effective rate_UL %f (%f), normalized delay %f (%f)\n",
-               errs_UE[kk][0],
-               round_trials_UE[kk][0],
-               errs_UE[kk][1],
-               round_trials_UE[kk][1],
-               errs_UE[kk][2],
-               round_trials_UE[kk][2],
-               errs_UE[kk][3],
-               round_trials_UE[kk][3],
-               (double)errs_UE[kk][0]/(round_trials_UE[kk][0]),
-               (double)errs_UE[kk][1]/(round_trials_UE[kk][1]),
-               (double)errs_UE[kk][2]/(round_trials_UE[kk][2]),
-               (double)errs_UE[kk][3]/(round_trials_UE[kk][3]),
-               rate_UE*((double)(round_trials_UE[kk][0])/((double)round_trials_UE[kk][0] + round_trials_UE[kk][1] + round_trials_UE[kk][2] + round_trials_UE[kk][3])),
-               rate_UE,
-               (1.0*(round_trials_UE[kk][0]-errs_UE[kk][0])+2.0*(round_trials_UE[kk][1]-errs_UE[kk][1])+3.0*(round_trials_UE[kk][2]-errs_UE[kk][2])+4.0*(round_trials_UE[kk][3]-errs_UE[kk][3]))/((
-                     double)round_trials_UE[kk][0])/(double)PHY_vars_eNB[kk]->dlsch_eNB[0][0]->harq_processes[0]->TBS,
-               (1.0*(round_trials_UE[kk][0]-errs_UE[kk][0])+2.0*(round_trials_UE[kk][1]-errs_UE[kk][1])+3.0*(round_trials_UE[kk][2]-errs_UE[kk][2])+4.0*(round_trials_UE[kk][3]-errs_UE[kk][3]))/((
-                     double)round_trials_UE[kk][0]));
-
-        fprintf(bler_fd,"%f;%d;%d;%f;%d;%d;%d;%d;%d;%d;%d;%d\n",
-                SNR,
-                mcs_UE,
-                PHY_vars_eNB[kk]->dlsch_eNB[0][0]->harq_processes[0]->TBS,
-                rate_UE,
-                errs_UE[kk][0],
-                round_trials_UE[kk][0],
-                errs_UE[kk][1],
-                round_trials_UE[kk][1],
-                errs_UE[kk][2],
-                round_trials_UE[kk][2],
-                errs_UE[kk][3],
-                round_trials_UE[kk][3]);
-      }//end kk
-
-    }// SNR
-
-  } //ch_realization
-
-
-  fclose(bler_fd);
-  fprintf(tikz_fd,"};\n");
-  fclose(tikz_fd);
-
-  if (input_trch_file==1)
-    fclose(input_trch_fd);
-
-  if (input_file==1)
-    fclose(input_fd);
-
-  if(abstx) { // ABSTRACTION
-    fprintf(csv_fd,"];");
-    fclose(csv_fd);
-  }
-
-  printf("Freeing dlsch structures\n");
-
-  for (i=0; i<2; i++) {
-    printf("eNB 0 %d\n",i);
-    free_eNB_dlsch(PHY_vars_eNB[0]->dlsch_eNB[0][i]);
-    printf("eNB 1 %d\n",i);
-    free_eNB_dlsch(PHY_vars_eNB[1]->dlsch_eNB[0][i]);
-    printf("UE 0 %d\n",i);
-    free_ue_dlsch(PHY_vars_UE[0]->dlsch_ue[0][i]);
-    printf("UE 1 %d\n",i);
-    free_ue_dlsch(PHY_vars_UE[1]->dlsch_ue[0][i]);
-  }
-
-
-#ifdef IFFT_FPGA
-  printf("Freeing transmit signals\n");
-
-  for (kk=0; kk<2; kk++) {
-    free(txdataF2_eNB[kk][0]);
-    free(txdataF2_eNB[kk][1]);
-    free(txdataF2_eNB[kk]);
-    free(txdata_eNB[kk][0]);
-    free(txdata_eNB[kk][1]);
-    free(txdata_eNB[kk]);
-
-    free(txdataF2_UE[kk][0]);
-    free(txdataF2_UE[kk][1]);
-    free(txdataF2_UE[kk]);
-    free(txdata_UE[kk][0]);
-    free(txdata_UE[kk][1]);
-    free(txdata_UE[kk]);
-  }
-
-  //modif end UL
-#endif
-
-  printf("Freeing channel I/O\n");
-
-  for (i=0; i<2; i++) {
-    for (kk=0; kk<2; kk++) {
-      free(s_re_eNB[kk][i]);
-      free(s_im_eNB[kk][i]);
-      free(s_re_UE[kk][i]);
-      free(s_im_UE[kk][i]);
-      free(r_re_2eNB[kk][i]);
-      free(r_im_2eNB[kk][i]);
-      free(r_re_2UE[kk][i]);
-      free(r_im_2UE[kk][i]);
-
-      for (ll=0; ll<2; ll++) {
-        free(r_re_eNB[kk][ll][i]);
-        free(r_im_eNB[kk][ll][i]);
-        free(r_re_UE[ll][kk][i]);
-        free(r_im_UE[ll][kk][i]);
-      }
-    }
-  }
-
-  for (kk=0; kk<2; kk++) {
-    for (ll=0; ll<2; ll++) {
-      free(r_re_eNB[kk][ll]);
-      free(r_im_eNB[kk][ll]);
-      free(r_re_UE[ll][kk]);
-      free(r_im_UE[ll][kk]);
-    }
-
-    free(s_re_eNB[kk]);
-    free(s_im_eNB[kk]);
-    free(s_re_UE[kk]);
-    free(s_im_UE[kk]);
-    free(r_re_2eNB[kk]);
-    free(r_im_2eNB[kk]);
-    free(r_re_2UE[kk]);
-    free(r_im_2UE[kk]);
-
-  }
-
-  //modif end UL
-  //  lte_sync_time_free();
-
-  return(0);
-}
-